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Drought and heat waves resulted in economic losses of $171 billion in the United States 

between 1980 and 2007, losses which emphasize the need for a proactive risk 

management approach for drought management. The motivation for this study is to 

develop and evaluate approaches and tools to improve drought monitoring and prediction 

in the U.S., through the use of advanced macroscale hydrologic models and 

weather/climate forecasts. The value of a macroscale hydrologic model-based Drought 

Monitoring System (DMS) was assessed in terms of its potential use as a drought-

monitoring tool in Washington State. The results show that had the DMS indicators been 

available during four major droughts from 1976 on, they would have detected the onset 

and recovery of drought conditions, in many cases, up to four months before state 

drought declarations. Subsequently, the relative contributions of the sources of seasonal 
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hydrologic and drought predictability (i.e., initial hydrologic conditions (IHCs) and 

climate forecast skill) were identified over the Contiguous U.S. (CONUS). This analysis 

indicated that improvement in hydrologic forecasts can result from better knowledge of 

IHCs in the western U.S. during spring and summer. On the other hand, improved climate 

forecast skill is needed to improve hydrologic and drought forecast skill in most parts of 

the northeastern and southeastern U.S. throughout the year and in the western U.S. during 

fall and winter months. The effect of medium range weather forecast skill (i.e. 14 days) 

on seasonal hydrologic/drought forecast skill was then investigated. The analysis 

indicated that medium-range weather forecasts have the potential to improve seasonal 

hydrologic forecast skill beyond the initial hydrologic condition effect at 1-month lead-

time and, in some cases, up to 3 months. Finally, the value of dynamical in contrast with 

statistical downscaling of seasonal climate forecasts was evaluated in terms of resulting 

improvement in seasonal hydrologic forecast skill. This analysis identified that dynamical 

downscaling does somewhat increase the seasonal hydrologic forecast skill over some 

parts of the Northwestern and North Central U.S. 
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I. INTRODUCTION 
 

Drought is among the most costly natural disasters (Lott and Ross 2006). In the U. S. 

alone drought losses average about $6-8 billion each year (FEMA 1995). In past century 

two drought events, 1930s “Dust Bowl” drought (1929–1940) and the 1950s Southwest 

drought (1946–1956) were particularly severe in terms of socio-economic impacts (Cook 

et al. 2007). Among more recent droughts, the 1999-2005 Western U.S. drought is 

noteworthy for its severity and areal extent (Sheffield and Wood 2011). As noted by 

Lawrimore and Stephens (2003), at its peak in July 2002, more than 50% of the 

contiguous U.S. was under moderate to severe drought conditions, with record or near-

record precipitation deficits throughout the West. Although the human costs of drought 

have been mitigated in the developed world by development of water resources 

infrastructure (Cook et al. 2007) , at the same time agricultural intensification and an 

increasing population in water short regions have increased the economic impacts of 

drought. For example, the ongoing drought in Texas alone (since late fall of 2010) has 

resulted in almost $8 billion in losses by some estimates (Fannin 2012). One way in 

which these economic losses can be mitigated is by drought monitoring, prediction and 

early warning systems. 

Significant strides have been made (particularly in the U.S.) to develop and implement 

new drought monitoring tools. These tools have increased the temporal and spatial 

resolution of drought monitoring and are available in near real-time (i.e. lags of one day 

to one week) (Hayes et al. 2005). One of the most widely used drought monitoring tools 

is the United States Drought Monitor (USDM, http://droughtmonitor.unl.edu/) (Svoboda 
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et al. 2002). The USDM combines various objective drought indicators along with 

subjective information from local experts to provide an assessment of current drought 

conditions that is expressed in four drought severity categories: Moderate (D1), Severe 

(D2), Extreme (D3) and Exceptional (D4). While the USDM has proved to be a valuable 

tool for drought, major challenges nonetheless remain in real-time drought monitoring.  

One of these is the availability of consistent observations of long term and real-time soil 

moisture across the U.S. Because of such data are scarce, most objective drought 

indicators including the ones used by the USDM rely mainly on precipitation data. 

Although precipitation deficits are the main driver of drought events, , there can be a lag 

between when precipitation deficits (i.e. Meteorological Drought) and soil moisture (i.e. 

agricultural drought) and runoff deficits (i.e. hydrological drought) (Wilhite and 

Buchanan-Smith 2005).  Furthermore, evaporative demand also plays a role in 

agricultural and hydrological drought, which is not recognized in precipitation-based 

measures.  Through projects like North American Land Data Assimilation (NLDAS) 

(Mitchell et al. 2004; Xia et al. 2011b; a) macroscale land surface models (LSMs) have 

been developed and used to represent hydrometerlogical processes and land surface 

atmosphere interactions (Maurer et al. 2002; Luo et al. 2003; Pan et al. 2003; Sheffield et 

al. 2003) including soil moisture. These LSMs can be run in off-line mode wherein 

observations of atmospheric forcings such as precipitation and temperature are prescribed 

to allow simulation of hydrological variables such soil moisture and runoff. Due to their 

ability to translate readily available observations of atmospheric forcings to output 

predictions of hydrologic variables, LSMs are increasingly being used for drought 

monitoring and prediction.  One example is the National Centers for Environmental 
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Prediction’s (NCEP) drought monitor 

(http://www.emc.ncep.noaa.gov/mmb/nldas/forecast/TSM/prob/).  Another is the 

University of Washington’s Surface Water Monitor 

(http://www.hydro.washington.edu/forecast/monitor/outlook/index.shtml).  Numerous 

previous studies have evaluated the ability of LSMs to reconstruct historical drought 

events and provide a basis for consistent long term drought analysis (Sheffield et al. 

2004; Andreadis et al. 2005; Mo 2008), however none of those studies investigated the 

applicability of LSM-based drought indicators to drought management decision processes.  

In addition to the challenges with drought monitoring tools, seasonal drought prediction 

suffers from limited climate forecast skill beyond one month or so (Lavers et al. 2009), 

and hence on a practical level seasonal hydrologic and drought prediction skill mostly is 

derived from knowledge of initial hydrologic conditions (Lettenmaier and Wood 2009). 

In order to improve seasonal drought prediction it is imperative to know the relative 

contributions of IHCs and climate forecast skill to seasonal drought prediction skill, and 

the variations of that lead time with seasonal, spatially, and with lead-time. Moreover, 

one potential avenue for improvement in seasonal drought prediction that at present has 

largely been unexploited is the use of medium range weather forecasts, which generally 

are skillful for least over first few days of lead time (Hamill et al. 2004, 2006). Current 

practice used in generating seasonal ensemble climate forecasts involves temporal offsets 

of a few days among the multiple ensemble members, which has the effect of ignoring 

forecast skill at weather time leads (also a few days) Finally, seasonal climate forecasts 

are usually available at much coarser spatial resolution than that used by LSMs in off-line 

simulations, so spatial downscaling of climate forecasts is needed to use them for 
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seasonal drought prediction. In practical applications, statistical downscaling methods 

have been favored to translate climate forecasts to the resolution of LSMs. Among the 

statistical methods that have been most widely used are Bias Correction and Spatial 

Downscaling (BCSD) (Wood et al. 2002) and Constructed Analog (CA) (Hidalgo et al. 

2008).  The major assumption behind the statistical downscaling methods is stationarity 

of the relationship between hindcasts performed using the model version and data 

assimilation system that was in place at the time of forecast.  This assumption clearly is 

not valid for global climate change scenarios (Clark and Hay 2004). In contrast, 

dynamical downscaling methods are more physically realistic, as they assure physical 

consistency across the regional and global scales. In dynamical downscaling regional 

climate models (RCMs) use prescribed lateral boundary conditions from the global 

climate model and are run at higher spatial resolution to represent in greater detail both 

topographic and land cover variations, while also allowing description of smaller-scale 

atmospheric processes which lead to the formation of mesoscale weather phenomena 

(Leung et al. 2003). 

This dissertation seeks to evaluate approaches to addressing the above-mentioned 

challenges, and to explore ways to improve drought monitoring and prediction by 

addressing the following overarching science and applications questions: 

1. How well do drought management decisions based on an LSM-based Drought 

Monitoring System (DMS) compare with decisions made in practice during historical 

drought events?  
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2. What are the relative contributions of the primary hydrologic moisture storage variables 

(i.e. snowpack, soil moisture) and the atmospheric forcings (i.e. precipitation and 

temperature) to seasonal drought prediction and how do they vary spatially and 

seasonally across the United States?  

3. Can seasonal drought prediction be improved by merging weather forecasts with seasonal 

climate forecasts, and to what extent?  

4. What is the value added in improvement of seasonal drought prediction through 

dynamical as contrasted with statistical downscaling of climate forecasts? 

These questions are addressed in four chapters in this dissertation. Chapter II 

(published as Shukla et al., 2011) evaluates an LSM-based drought monitoring system 

using actual drought management decisions made during four major historical drought 

events in Washington State. Chapter III (published as: Shukla and Lettenmaier, 2011) 

investigates the relative contributions of IHCs and seasonal climate forecast skill in 

seasonal hydrologic predictions for the continental U.S. Chapter IV  (in review as 

Shukla et al., 2012) explores the impact of 14-day weather forecasts on seasonal 

hydrologic and drought prediction across the continental U.S. Finally, Chapter V  (to be 

submitted to the Journal of Geophysical Research as Shukla et al., 2012) determines the 

relative value of dynamically vs statistically downscaled winter season CFS forecasts in 

terms of the improvement in seasonal hydrologic forecast skill.  
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II. DROUGHT MONITORING FOR WASHINGTON STATE:  

INDICATORS AND APPLICATIONS 

This chapter has been published in its current form in the Journal of Hydrometeorology: 

Shukla, S., A. C. Steinemann, and D. P. Lettenmaier. 2011. Drought monitoring for 

Washington state: Indicators and Applications. J. Hydrometeor. 12: 66–83, 

10.1175/2010JHM1307.1. 

  

1. Introduction 

 

Droughts can cause significant economic losses that reach all levels of society.  Between 

1980 and 2005, droughts and heat waves in the U.S. inflicted an estimated $174 billion 

(2009 dollars) in damages (Lott and Ross, 2006). Since 1963, 46 federal drought 

declarations have been made across the U.S (FEMA, 2009).  Despite its water-abundant 

reputation, the state of Washington has experienced two major statewide droughts in the 

last decade (2000-2001 and 2004-2005).  Both droughts resulted in large economic 

losses:  about $359 million and $542 million (2009 dollars), respectively (Fontaine and 

Steinemann, 2009).  

Future water availability in the state is projected to decline, owing in part to global 

warming and resultant declines in snowpack (Barnett et al., 2008; Mote et al., 2005, 

2008; Elsner et al., 2009).  This suggests an increased likelihood of future droughts, and a 

need to shift drought management strategies from reactive to proactive (Wilhite, 2000).  

Proactive drought management systems depend on timely and accurate information about 
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the evolution of drought conditions and water supply outlooks (Hayes et al., 2004).  

Drought indicators are one element of proactive strategies that can detect and characterize 

drought conditions.  Drought triggers, or specific values of drought indicators, can 

represent classes of drought severity and be linked to drought responses to reduce 

impacts (Steinemann, 2003). 

In addition to the characterization of drought based on hydrologic variables (e.g., 

precipitation, runoff, SM), drought can also be characterized by its temporal extent and 

persistence.  The impact of drought depends on not only the indicator, but also on the 

potential uses of water over the time period and region of interest.  For example, SM 

deficiencies with duration as short as one month can result in severe impacts on 

agricultural production if they occur during times of maximum crop water use.  One of 

the costliest U.S. droughts to date was the 1988 drought, when the federal government 

spent $6.7 billion on drought relief programs and $4.3 billion (both in 2009 dollars) on 

farm credit programs (Riebsame et al., 1991).  That drought lasted less than six months, 

but was closely aligned with the spring and summer growing season in the most 

agriculturally productive part of the U.S.  Lack of streamflow to sustain low flows is 

another key drought concern, with environmental consequences that are less amenable to 

economic valuation.  Furthermore, in the case of streamflow, the temporal lag between 

drought onset and its impact can be influenced by reservoir storage. Taken together, all of 

these factors highlight the importance of drought monitoring systems (DMSs) that can 

provide information about drought conditions at different time scales and for different 

water users.  



www.manaraa.com

  8 

 Common indicators of drought include precipitation, streamflow, and soil moisture (SM).  

However, long-term SM (and to a lesser extent, streamflow for unregulated streams) 

observations across the U.S. are scarce. Therefore, SM and runoff data sets produced by 

the Land Surface Models (LSMs) that comprise the North-American Land Data 

Assimilation System (NLDAS); Mitchell et al., 2004) have become a valuable source of 

information for drought monitoring and prediction (Mo, 2008). The LSMs produce 

nowcasts (model representations of current hydrologic conditions) that simulate the time 

lag between precipitation (deficiency) and SM and runoff deficiencies.  These latter two 

variables are directly related to the availability of water for agricultural and municipal 

users.  A strength of LSM-based indicators is that they can be aggregated to any 

geographical area, such as counties, watersheds, or hydro-climate zones, whereas 

indicators such as the Palmer Drought Severity Index (PDSI, Palmer 1965) are usually 

calculated at the relatively coarse spatial resolution of the NOAA climate divisions. The 

use of LSMs is also desirable because real-time estimates can be related to long-term 

climatologies derived by running the models using retrospective forcings (typically 

precipitation and temperature) that go back many years, often approaching a century, 

depending on data availability.   

 Retrospective LSM simulations are especially valuable for reconstructing and 

characterizing the severity of multi-year drought events.  One increasingly common 

method of relating current conditions with historical simulations is to express LSM-

derived variables, such as SM, in terms of percentiles relative to a retrospective 

simulation.  This approach has been used by Sheffield et al. (2004), Andreadis et al. 

(2005), Andreadis and Lettenmaier (2006), and Mo (2008).  Retrospective LSM 
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simulations have also been used to evaluate trends in drought-related variables.  For 

instance, Andreadis and Lettenmaier (2006) found that trends in model-simulated runoff 

over the 20th century compared well with similar studies by Lins and Slack (1999) that 

were based on observed streamflow.  Sheffield et al. (2004) found LSM-simulated SM 

performed well as an indicator of vegetative growth. Shukla and Wood (2008) and Mo 

(2008) showed that model-derived runoff percentiles and a model-derived SRI reflected 

the seasonal lag in the influence of precipitation and snowmelt on streamflow.   

In this study, we evaluate how a DMS for Washington State, based on an LSM, would 

perform with respect to identification of four major droughts that occurred in Washington 

State over the last 30 years.  Our objectives are to (1) describe DMS indicators and their 

application; (2) reconstruct four historical droughts using DMS products; and (3) 

compare DMS drought indicators with drought conditions and management decisions 

during each of the four drought events.    

2. Methodology 

 

In the following sub-sections, we first describe the major hydroclimatological features of 

Washington State and the methodology adopted to calculate the drought indicators used 

in our DMS.  We then illustrate the drought severity classification method used for this 

study. 

2.1 Study domain 

 

Our study domain is Washington State. Annual average precipitation over the state varies 

from less than 25.4 cm (10 inches) to more than 381 cm (150 inches), with high 
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precipitation areas mostly on the western slopes of the Cascade Mountains, and the 

lowest precipitation in the east central interior of the state. The nature of water supply 

systems, and hence the characteristics of DMS, varies across the state with its 

hydroclimatology.  For instance, in the arid and semi-arid eastern part of the state, water 

is managed primarily for agricultural water supply and (in the case of the Columbia River 

system) hydropower production, whereas in the more humid western part of the state, 

municipal water supply and hydropower production dominate.  In both parts of the state, 

in-stream flow requirements are a serious consideration, as related especially to 

protection and enhancement of native salmonids.  

During the last century, the state has experienced 24 major drought events (King 1978, 

EWEC 1988, Hart et al., 2001, and Andreson et al., 2005). In the State’s drought 

contingency plan, developed in 1992, water supply monitoring and forecasting 

responsibilities were assigned to the Water Supply Advisory Committee (WSAC). The 

WSAC advises the governor to convene the Executive Water Emergency Committee 

(EWEC) during drought conditions.  The EWEC is responsible for assessing the overall 

impacts of ongoing droughts and coordinating the State’s response. As defined by the 

Washington Administrative Code, “Drought conditions are water supply conditions 

where a geographical area or a significant part of a geographical area is receiving, or is 

projected to receive, less than seventy-five percent of normal water supply as the result of 

natural conditions and the deficiency causes, or is expected to cause, undue hardship to 

water users within that area” (WAC, 2010).  The state’s climatological and hydrological 

features play a key role in drought declarations, as they relate directly to the drought 

declaration criterion of being likely to receive “less than seventy-five percent of normal 
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water supply.”  

Washington State is divided into 62 Water Resource Inventory Areas (WRIAs) (Figure 

2.1), which are similar to the U.S. Geological Survey 5th and 6th layer Hydrologic Unit 

Codes.   Before starting this study, we met with state and regional water managers, and 

other stakeholders, to determine ways that an indicator system might be most useful to 

them, and an appropriate scale for decision-making. Based on those discussions, we 

determined that the WRIAs would be a useful and appropriate unit for the indicator 

system.  

 

Figure 2.1: Map of Water Resource Inventory Areas (WRIAs). (Yakima basin is 
highlighted in grey.)  

 

2.2 Climatology of the State 
 

Figure 2.2 shows the long term monthly mean precipitation, SWE, SM, and runoff, 

spatially averaged over the state, where precipitation is gridded from observations 
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following methods outlined in Elsner et al. (2010) and Maurer et al. (2002), and the other 

variables are output from the Variable Infiltration Capacity (VIC; Liang et al., 1994) 

hydrology model.  As is evident from the plot, maximum precipitation is concentrated in 

fall and winter months, the wettest of which are November, December, January and 

February (NDJF).  

 

Figure 2.2: Monthly cycle of precipitation (P), snow water equivalent (SWE), soil 
moisture (SM), and runoff (RO), averaged over the state based on 1950-2005 averages. 

Because annual precipitation is so heavily dependent on precipitation during these 

months, in years when there is a substantial accumulated precipitation deficit at the end 
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of this four-month period, it is unlikely the deficit can be offset later in the water year. 

Therefore, for any given water year, precipitation is crucial for drought planning purposes.    

In winter (DJF), most precipitation in headwater areas of the state’s major streams falls in 

the form of snow (noting that while November is an important contributor to wet season 

precipitation, substantial accumulations of snow in the mountainous regions of the state 

do not usually begin until December).  As winter snowpack melts in spring and summer, 

it provides much of the water year’s runoff, especially for rivers with high elevation 

headwaters draining the eastern slope of the Cascades. Snowmelt also contributes to SM 

in much of the eastern part of the state, and high elevation areas in the western part of the 

state, and to runoff over most of the state during the relatively dry spring (MAM) and 

summer (JJA) months.  

SM is usually high in the low elevation areas of the state during winter (DJF) due to high 

precipitation and low evapotranspiration.   Although in the highest elevation areas, where 

relatively little melt occurs during winter, low SM may persist throughout the winter as a 

result of end-of-summer dry conditions, until it is replenished by snowmelt. Therefore, 

SM can be a useful and integrative drought indicator for much of the year and over many 

parts of the state, although it may not be as suitable for winter months in the high 

elevation areas.  Below-normal SM during spring (MAM) and summer (JJA) typically 

occurs due to lack of precipitation in winter (DJF) in high elevation areas. For both high 

and low elevation areas, below-normal SM conditions during spring (MAM) and summer 

(JJA) usually prevail through the end of the water year.   
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Runoff generally shows a stronger seasonal cycle than does SM, and follows the cycle of 

precipitation and SWE with some temporal lag. For snowmelt dominant watersheds 

(most of the state, aside from some coastal and western interior streams), runoff is high 

during spring and early summer due to snowmelt and rainfall, and declines rapidly 

through the summer dry season. For this reason, drought indicators based on late winter 

and spring conditions (observed or forecasted) can be especially useful for drought 

management. 

2.3 Hydrology model  

 

The physically based, semi-distributed VIC model (Liang et al., 1994) was used to derive 

SM and runoff over the study domain. The VIC model balances both surface energy and 

water over each grid cell (in this case, 1/16th degree).  The VIC model represents sub-grid 

variability in soils, topography and vegetation and this allows representation of the non-

linear dependence of the partitioning of precipitation into infiltration and direct runoff as 

determined by soil-moisture in the upper layer and its spatial heterogeneity.  The VIC 

model partitions the subsurface into three layers. The first layer has a fixed depth of 10 

cm, and responds quickly to changes in surface conditions and precipitation. The second 

and third soil layer depths are the same as in the LDAS retrospective simulations (Maurer 

et al., 2002).  Moisture movement between the first and second, and second and third soil 

layers is governed by gravity drainage, with diffusion from the second to the upper layer 

allowed in unsaturated conditions. Water from the second layer drains to the third layer is 

entirely gravity controlled.  Base flow is a non-linear function of the moisture content of 

the third soil-layer (see Liang et al., 1994 for details).  
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The VIC model has been successfully used in numerous drought studies.  Mishra et al. 

(2009) analyzed historical droughts over the U.S. Midwest using the VIC model.  

Sheffield et al. (2004) and Andreadis et al. (2005, 2006) applied the model over the 

continental U.S. to reconstruct 20th century droughts.  Sheffield et al. (2008) 

reconstructed global droughts over the second half of the 20th century, and Sheffield et al. 

(2009) evaluated potential changes in 21st century drought using the model forced by 

downscaled global climate model scenarios.  

2.4 Retrospective Simulations 

 

We performed a reconstruction of drought conditions over Washington state similar to 

the studies cited above, but at a higher (1/16 degree latitude-longitude) spatial resolution.  

We ran the VIC model from 1915 to 2006 to produce gridded SM, SWE, and runoff, as 

well as precipitation (model forcing).  The period selected was intended to include the 

major known droughts of the 20th century, consistent with the availability of data to 

produce realistic model simulations.  (Prior to 1915, the number of stations at which 

precipitation and temperature have been observed falls off rapidly, and this is therefore 

the beginning of our period of analysis.)  We performed model simulations at a daily time 

step in water balance mode, meaning that the model’s effective surface temperature is 

equal to surface air temperature, rather than iterating to close the surface energy balance 

(Liang, et al., 1994). There are 5,282 1/16th degree grid cells in the domain. We used a 

data set developed by Elsner et al. (2010), which is based on daily precipitation, and 

maximum (Tmax) and minimum (Tmin) temperature data from Cooperative Observer 

stations, which were gridded using methods outlined in Maurer et al. (2002).  Additional 



www.manaraa.com

  16 

model forcings (downward solar and longwave radiation, and humidity) were estimated 

from the daily air temperature and temperature range following methods outlined in 

Maurer et al. (2002). Surface wind was taken from the lowest level of the NCEP/NCAR 

reanalysis (Kalnay et al., 1996); prior to 1949, average wind values from the reanalysis 

were used.  A total of 196 precipitation and temperature stations within and near the 

boundaries of the domain were used in the development of the gridded data set(s) by 

Elsner et al. (2010). Temperature data were lapsed using a pseudo-adiabatic lapse rate 

based on the difference between the station and grid elevations. Both precipitation and 

temperature were then rescaled to match the long-term average of the parameter-

elevation regressions on independent slopes model (PRISM) climatology (Daly et al., 

1994 and 1997) for the period 1971-2000. 

2.5 Model-based drought indicators 

 

Hydrologic model-derived SM and runoff values, in addition to SPI and SRI, are the 

drought indicators used in this study.  In this section we describe the development of 

these indicators. 

2.5.1 Standardized Precipitation Index (SPI)  

 

SPI (McKee et al., 1993) is a widely used drought indicator. It is calculated directly from 

precipitation data.  It allows expression of droughts (and wet periods) in terms of 

precipitation deficits (Heim 2002).  

We used monthly gridded precipitation data to compute SPI for each grid cell. To 

estimate an n-month SPI (where n was 1, 3, 6, 12, 24, and 36), precipitation was averaged 
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over the n-months and a Gamma distribution was fit to the time series.  To promote ease 

of understanding and application to decision-making, based on interactions with water 

managers and stakeholders, we used percentiles of these indicators, rather than a standard 

normal deviate (McKee et al., 1993; Heim, 2002; Mo, 2008). Therefore, our SPI values 

lie between 0 and 1. 

2.5.2 Standardized Runoff Index (SRI)  

The Standardized Runoff Index (Shukla and Wood, 2008; Mo, 2008) uses model-derived 

runoff data (overland plus baseflow in the VIC model) to derive an indicator, based on 

essentially the same methodology as the SPI (McKee et al., 1993). We first aggregated 

daily runoff data into monthly values, and fit Gamma distributions to the derived runoff 

climatologies for each grid cell and month as described in Shukla and Wood (2008). 

Again, we used percentiles for this indicator, rather than a standard normal deviate. 

2.5.3 Soil Moisture Percentile (SMP)  

 

SM can serve as an indicator of different types of drought.  The availability of high 

quality SM observations is highly limited.  However, model-derived SM provides a 

reasonable alternative for large scales studies (see e.g. Maurer et al., 2002; Wood and 

Lettenmaier, 2006).  Several past studies (e.g. Sheffield et al., 2004; Andreadis et al., 

2005 and 2006) have used model-derived SM in ways that are similar to our approach 

here.  

We used total column SM (sum of the three model layers) averaged by month. The 91 

years of monthly values formed the climatology for each grid cell and month. We 
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converted the SM into percentiles using the Weibull probability distribution. The method 

adopted is essentially the same as was used by Andreadis et al. (2005) and Wood and 

Lettenmaier (2006). 

2.6 Drought severity classes  

 

We used SPI, SRI, and SMP as drought indicators. As indicated above, our percentile 

values of SPI, SMP, and SRI lie between 0 and 1.  We categorized the individual drought 

indicators into six drought severity classes based on Steinemann (2003), acknowledging 

that other thresholds for drought classes could be used as well.  Table 2.1 describes the 

values of individual drought indicators, based on percentiles.  We used a percentile 

approach because it offers statistical consistency and comparability among indicators 

over time and space, which is not necessarily offered by other approaches, such as 

percent-of-normal.  

Table 2.1 Drought severity classifications, according to percentiles. 

Standardized 
Precipitation Index 
(SPI) 

(percentiles) 

Standardized 
Runoff Index (SRI) 

(percentiles) 

Soil 
Moisture 

Percentile 
(SMP) 

Drought 
Severity 
Class 

0.50 to 1.0 0.50 to 1.0 0.50 to 1.0 1  

0.35 to 0.50 0.35 to 0.50 0.35 to 0.50 2 

0.20 to 0.35 0.20 to 0.35 0.20 to 0.35 3 

0.10 to 0.20 0.10 to 0.20 0.10 to 0.20 4  

0.05 to 0.10 0.05 to 0.10 0.05 to 0.10 5 

0 to 0.05 0 to 0.05 0 to 0.05 6 
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3. Analysis of Indicators and Droughts 

 

Washington State has experienced numerous drought events over the last century.  Figure 

2.3 shows the number of WRIAs with drought severities of class 3 or higher (more 

severe), as defined in Table 1, in terms of SMP, SPI -12, -24, -36 and SRI -12, -24, -36 

from 1925 to 2006.   

In figure 2.3, the drought years of the 1930s, 1940s, 1976-77, 1987-1989, 2000-2001 and 

2004-2005 stand out as the major drought events.  We used DMS indicators to 

reconstruct four of these drought events: 1976-1977, 1987-1989, 2000-2001, and 2004-

2005. We also surveyed the literature on drought conditions and responses relevant to 

Washington applicable to these events, including the drought report (Hart et al., 2002; 

Anderson et al., 2005), and initial drought action program prepared by EWEC in 1978 

and 1988 and local newspapers (e.g., The Seattle Times and Yakima Herald). 

In the following sections, we compare the reconstructed droughts using DMS indicators 

for each WRIA. For each individual drought event, we first examine how each drought 

evolved in terms of DMS indicators. To do so, we calculate the number of WRIAs with a 

drought severity of class 3 or higher, which corresponds roughly to the threshold used by 

the Washington State Department of Ecology to declare drought in a given area.  We then 

examine the progression, persistence, and recession of drought, analyzing the severity 

class of each drought indicator for each month throughout the duration of the four 

drought events. Then, for a more focused case study, we use the highly drought-
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vulnerable Yakima River Basin, whose irrigated crops, and potential drought losses, 

represent the highest agricultural economic value in the state.    

 

Figure 2.3: Number of WRIA under drought severity class 3 or more severe drought 
classes 1925-2006 according to DMS indicators.   
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To provide an assessment of drought onset and recovery that is relevant to state drought 

decision-making, we perform additional analyses using DMS indicators, following 

Steinemann and Cavalcanti (2006). We define drought onset as the last month of any 

three-month period for which an indicator has a continuous drought severity of class 3 or 

higher.  We define drought recovery as the last month of the next four-month period for 

which that indicator has a continuous drought severity of class 2 or lower (less severe).  

The onset of the next drought is then defined as the last month of the next three-month 

period for which the indicator again has a continuous drought severity of class 3 or higher. 

Results are provided for the Yakima River Basin in Tables 2.2(b), 2.3(b), 2.4(b), and 

2.5(b), where drought onset is indicated by bold italic font, and drought recovery is 

indicated by bold regular font.  The drought onset criterion of three consecutive months 

with a drought severity of class 3 or higher, and the drought recovery criterion of four 

consecutive months with a drought severity of class 2 or lower, strives to provide early 

warning, but guard against premature declarations of drought onset ("false alarms") or 

drought recovery ("false assurances"), respectively, as described in Steinemann and 

Cavalcanti (2006).  

In order to assess statewide occurrences of drought, we extend this analysis by defining 

the onset of statewide drought as when 50% or more of the WRIAs (i.e., 31 or more of 

the 62 WRIAs) have a drought severity of class 3 or higher for three consecutive months, 

and by defining the recovery from statewide drought when fewer than 50% of the WRIAs 

have a drought severity of class 2 or lower for four consecutive months.  Results are 

provided in Tables 2.2(a), 2.3(a), 2.4(a), and 2.5(a), where drought onset and recovery are 

again indicated by bold italic and bold regular fonts, respectively.  Tables 2.2–2.5 also 
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indicate the months of the state's official drought declaration and recovery for each of the 

four droughts with bold italic and bold regular fonts in the left hand columns.  Finally, to 

provide a more specific evaluation of these indicators and to offer comparisons with real-

time drought declarations, we examine the evolution of the four drought events and the 

results from the DMS in the following sections. 

3.1 1976-1977 Drought 

 

 Lack of precipitation during the fall (SON) of 1976, combined with record-low 

snowpack in the winter of 1977, resulted in a severe drought during Water Year (WY) 

1977.  Figure 2.4 shows the major water balance components (precipitation, temperature, 

SM, SWE, and runoff), spatially aggregated across the state, as they evolved during WYs 

1977 and 1978.  Although WY 1976 ended with normal conditions, it was followed by a 

dry fall in the beginning of WY 1977. Considerably below-normal precipitation began to 

affect SM by late November. Record-low snowpack during the winter further exacerbated 

these conditions, leading to extremely low SM and a significant drop in runoff in the 

spring. Furthermore, the spring of 1977 was relatively warm, resulting in an early melt of 

the abnormally low snowpack. On April 1, 1977, SWE ranged from 30-71% of normal 

(King 1978).  
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       (a)      (b) 

Figure 2.4: Statewide cumulative precipitation (Precip (Cum.) ), average temperature (Av. 
Temp), soil moisture (SM), snow water equivalent (SWE) and cumulative runoff (RO 
(Cum.)) during WY 1977 (a) and 1978 (b) shown against 1950-2005 mean climatology, 
maximum and minimum values for each month. 

 

Due to the combined effects of the low winter snowpack and warm spring, little snow 

remained by the end of June, resulting in extremely low summer streamflows in most of 

the state’s watersheds.  The official drought recovery was attained in December 1977.  

Table 2.2(a) shows the number of WRIAs with a drought severity of class 3 or higher as 

calculated by the SMP and SPI/SRI-3, -6, -12, -24, and -36 in 1976. In January 1977, 

SMP, SPI-3, SRI-3, SPI-6 met this criterion. At the time of the official drought 

declaration in March 1977, all indicators except SPI/SRI-24 and -36 were, by our 

definition, already in statewide drought.  
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Table 2.2 (a) Number of WRIAs under class 3 or more severe drought according to DMS 
indicators during the 1976-77 drought. 

Month SMP SPI-3 SRI-3 SPI-6 SRI-6 SPI-12 SRI-12 SPI-24 SRI-24 SPI-36 SRI-36 

Jan-76 0 1 0 0 0 0 0 0 0 0 0 

Feb-76 0 0 0 0 0 0 0 0 0 0 0 

Mar-76 1 0 1 0 0 0 0 0 0 0 0 

Apr-76 0 0 3 0 0 0 0 0 0 0 0 

May-76 4 25 4 0 0 0 0 0 0 0 0 

Jun-76 0 37 4 3 0 0 0 0 0 0 0 

Jul-76 0 3 3 2 0 0 0 0 0 0 0 

Aug-76 0 0 0 0 3 0 0 0 0 0 0 

Sep-76 0 0 0 3 0 0 0 0 0 0 0 

Oct-76 11 8 7 13 3 3 0 0 0 0 0 

Nov-76 52 61 55 58 30 10 0 0 0 0 0 

Dec-76 61 61 61 59 41 59 17 0 0 1 0 

Jan-77 61 61 61 61 53 61 38 30 1 13 0 

Feb-77 61 61 61 61 61 61 41 50 3 20 0 

Mar-77 57 61 61 61 61 61 49 50 10 24 3 

Apr-77 61 61 61 61 61 61 54 53 18 44 12 

May-77 55 19 60 61 61 61 58 45 22 38 15 

Jun-77 53 50 61 61 61 61 61 52 26 39 19 

Jul-77 56 4 55 56 61 61 61 49 31 54 23 

Aug-77 53 0 52 8 59 61 61 49 34 33 22 

Sep-77 22 0 34 2 57 61 61 30 34 19 23 

Oct-77 22 0 28 1 50 61 61 58 44 16 20 

Nov-77 23 0 21 1 39 61 61 60 53 13 21 

Dec-77 2 0 1 0 18 9 56 61 56 5 17 

Jan-78 8 0 1 0 6 2 50 61 60 14 18 

Feb-78 8 5 2 1 1 0 44 61 61 20 15 
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Mar-78 21 55 23 9 1 2 42 61 59 32 17 

Apr-78 8 37 29 2 2 0 29 61 60 18 15 

May-78 0 5 31 5 4 2 19 61 61 12 19 

Jun-78 6 0 22 41 28 1 11 61 61 17 20 

 

 Figure 2.5 depicts the spatial distribution of drought severity during three months of the 

drought, highlighting its statewide impact in terms of SPI/SRI-6, -12, and SMP.  In 

March 1977, virtually the entire state had a drought severity of class 5 or 6 in terms of 

SPI-6, -12, and SRI-6.  

  We defined the recovery from statewide drought as the last month of a four-month 

period for which an indicator had a drought severity of class 3 or higher in less than 31 of 

the WRIAs.  As shown in Table 2.2(a), SPI-3 met this criterion in November 1977, while 

SPI-6 met it in December 1977. As noted above, the official drought recovery declaration 

came in December 1977, but by then, according to DMS, these two indicators were the 

only ones that showed any real sign of recovery. This number increased to five by March 

1978.  The decision to declare drought recovery, however, also depends on the status of 

the snowpack (Anderson et al., 2005). As shown in Figure 6, SWE percentiles during the 

winter of 1978 were mostly normal or above normal.  

 
(a) 

SPI‐6 for Dec 1976  SPI‐6 for March 1977  SPI‐6 for Dec 1977 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(b) 

 
      (c) 

 
                 (d) 

 
                 (e) 

                            

Figure 2.5: Spatial depiction of 1976-77 drought severity according to DMS indicators 
(a) SPI-6 (b) SRI-6 (c) SPI-12 (d) SRI-12 (e) SMP.   

SRI‐6 for Dec 1976  SRI‐6 for March 1977  SRI‐6 for Dec 1977 

SPI‐12 for Dec 1976  SPI‐12 for March 1977  SPI‐12 for Dec 1977 

SRI‐12 for Dec 1976  SRI‐12 for March 1977  SRI‐12 for Dec 1977 

SMP for Dec 1976  SMP for March 1977  SMP for Dec 1977 

6  5  4  3  2  1 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Figure 2.6: Model simulated snow water equivalent percentiles (SWEP) during January, 
February and March 1977 and 1978.   

 

Table 2.2(b) shows the monthly progression and recession of drought severity in the 

Yakima River Basin during 1976 and 1977.  By January 1977, the onset of basin-wide 

drought was indicated by SMP, SPI-3, SRI-3, SPI-6.  By March 1977, when drought was 

officially declared, SRI-6, -12 and SPI-12, -24 also indicated basin-wide drought. By the 

time the drought was officially declared over in December 1977, the indicators that 

showed sign of recovery were SPI-3, (October) SPI-6 (November), SMP, SRI-3 and SPI-

36 (December). By March 1978, SRI-6, and SPI-12 had also recovered. 

Table 2.2 (b) Drought severity classes according to DMS indicators in the Yakima River 
Basin during the 1976-77 drought.  

Month SMP SPI-3 SRI-3 SPI-6 SRI-6 SPI-12 SRI-12 SPI-24 SRI-24 SPI-36 SRI-36 

Jan-76 1 1 1 1 1 1 1 1 1 1 1 

Feb-76 1 1 1 1 1 1 1 1 1 1 1 

SWEP for Jan 1977  SWEP for Feb 1977  SWEP for March 1977 

SWEP for Jan 1978  SWEP for Feb 1978  SWEP for March 1978 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Mar-76 1 1 1 1 1 1 1 1 1 1 1 

Apr-76 1 1 2 1 1 1 1 1 1 1 1 

May-76 1 3 2 1 1 1 1 1 1 1 1 

Jun-76 1 3 1 1 1 1 1 1 1 1 1 

Jul-76 1 1 1 1 1 1 1 1 1 1 1 

Aug-76 1 1 1 1 1 1 1 1 1 1 1 

Sep-76 1 1 1 1 1 1 1 1 1 1 1 

Oct-76 1 2 1 2 1 1 1 1 1 1 1 

Nov-76 4 6 4 4 1 1 1 1 1 1 1 

Dec-76 5 6 6 6 3 4 2 1 1 1 1 

Jan-77 6 6 6 6 6 6 3 3 1 2 1 

Feb-77 6 6 6 6 6 6 4 3 1 2 1 

Mar-77 6 6 6 6 6 6 5 3 1 2 1 

Apr-77 6 4 6 6 6 6 5 3 1 3 1 

May-77 6 1 6 6 6 6 6 3 2 3 1 

Jun-77 6 3 6 6 6 6 6 3 2 3 2 

Jul-77 6 1 6 3 6 6 6 3 3 3 2 

Aug-77 4 1 4 1 5 6 6 3 3 3 2 

Sep-77 1 1 2 1 5 6 6 2 3 2 2 

Oct-77 1 1 1 1 4 6 6 3 3 2 2 

Nov-77 1 1 1 1 2 4 6 3 3 1 2 

Dec-77 1 1 1 1 1 2 3 3 3 1 1 

Jan-78 1 1 1 1 1 1 3 4 3 2 1 

Feb-78 1 1 1 1 1 1 2 5 4 2 2 

Mar-78 2 4 3 2 1 1 2 5 4 3 2 

Apr-78 2 3 3 1 1 1 2 5 4 2 2 

May-78 1 2 3 2 1 1 1 4 4 2 2 

Jun-78 1 1 3 4 3 1 1 4 4 2 2 
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3.2  1987-1989 Drought 

 

 The 1987-89 drought resulted primarily from below-normal rainfall and hence snow 

accumulation during the fall of 1987 and winter of 1988 (EWEC 1988).  An extended dry 

spell that lasted from summer 1987 into winter 1988 was attributable in part to El Niño. 

Seattle, which normally receives about 20 cm (8 inches) of rain from June to October, 

had only 4.5 cm (1.8 inches) of rain during that period in 1987. Consequently, a serious 

water supply situation resulted for the City of Seattle and its customers in late summer 

and fall of 1987 (Lettenmaier et al., 1990). Anomalously low precipitation, combined 

with warm temperatures in the following winter of 1988, led to below-normal snow 

accumulation and early snowmelt in spring 1988, which extended the drought into 1988.  

On March 7, 1988, the United States Bureau of Reclamation (USBR) announced, “a 

water supply shortage is likely this summer” (EWEC 1988).  Normal precipitation and 

snow accumulation during fall 1988 and winter 1989 brought an end to the drought.  

 As shown in Figure 2.7(a), precipitation and snowfall were below normal statewide 

during WY 1988. Throughout the fall of 1987 and much of 1988, SM and cumulative 

runoff were also below normal. During WY 1989 (Figure 2.7 (b)) the precipitation and 

snowfall returned to normal.  

 WY 1988 began as a dry year with all indicators showing signs of ongoing drought by 

November (Table 2.3 (a)). Although it is not known exactly when statewide drought was 

declared, we do know that by the late fall of 1987, water supply and hydropower 

production for the City of Seattle were significantly affected (Lettenmaier et al., 1990).  

By July 1988, SPI-3 and SPI-6 were in recovery; by then, the number of WRIAs with a 
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drought severity of class 3 or higher for these indicators had been less than 31 for four  

months, an improvement that could be attributed to a spring storm. Nevertheless, none of 

the other indicators showed signs of recovery, and the statewide drought persisted 

through the fall of 1988. Although we were unable to obtain information as to how long 

the official statewide drought declaration remained in effect, indications from the DMS 

are that SMP, SPI-12, and SRI-3, -6, -12 showed recovery in January, February and June 

1989, respectively.  

 

 

    (a)        (b) 

Figure 2.7: Statewide cumulative precipitation (Precip (Cum.)), average temperature (Av. 
Temp), soil moisture(SM), snow water equivalent (SWE) and cumulative runoff (RO 
(Cum.)) during WY 1988 (a) and 1989 (b) shown against 1950-2005 mean climatology, 
maximum and minimum values for each month.  
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Table 2.3 (a) Number of WRIAs under class 3 or more severe, according to DMS 
indicators, during the 1987-88 drought.  

Month SMP SPI-3 SRI-3 SPI-6 SRI-6 SPI-12 SRI-12 SPI-24 SRI-24 SPI-36 SRI-36 

Jan-87 15 14 11 21 12 7 8 51 51 42 38 

Feb-87 6 61 36 23 8 43 11 49 47 47 39 

Mar-87 8 13 14 31 12 22 23 36 39 43 40 

Apr-87 36 9 16 20 15 25 20 33 36 46 49 

May-87 45 0 22 52 34 28 27 29 36 53 50 

Jun-87 49 32 48 39 27 24 30 36 40 56 54 

Jul-87 46 14 52 7 25 19 31 22 40 53 54 

Aug-87 41 39 50 0 30 11 30 26 39 52 55 

Sep-87 58 39 45 41 56 54 36 45 42 54 56 

Oct-87 61 61 61 57 61 60 44 60 47 60 58 

Nov-87 61 61 61 61 61 61 59 61 51 61 59 

Dec-87 52 56 56 51 57 57 59 49 47 61 59 

Jan-88 58 37 48 60 59 57 59 56 51 60 59 

Feb-88 54 44 39 61 54 57 60 61 54 60 58 

Mar-88 58 49 61 61 60 59 61 61 61 60 60 

Apr-88 48 5 39 26 59 55 61 61 61 55 60 

May-88 42 0 28 1 56 54 61 61 61 54 60 

Jun-88 17 0 25 5 57 48 60 56 61 54 60 

Jul-88 23 0 29 1 44 59 61 59 61 51 60 

Aug-88 36 33 33 0 32 61 61 59 61 56 60 

Sep-88 56 17 43 0 26 57 61 61 61 58 60 

Oct-88 26 32 43 22 37 35 61 61 61 61 60 

Nov-88 2 0 2 0 11 0 50 59 61 58 59 

Dec-88 17 3 14 12 27 10 52 59 61 47 58 

Jan-89 6 1 1 11 11 8 45 58 61 54 58 

Feb-89 37 57 46 22 31 1 51 56 61 61 60 
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Mar-89 12 4 24 6 18 0 30 50 60 55 61 

Apr-89 6 7 12 4 7 2 24 45 59 56 60 

May-89 27 0 2 28 24 9 19 43 58 55 60 

Jun-89 34 18 6 9 11 12 20 44 57 53 60 

 

Analysis of the spatial extent of the drought (not shown here) depicted that at the time of 

its onset, the drought was more pronounced in western Washington, especially in the 

vicinity of Seattle, than in the eastern part of the state. However, as the water year 

progressed, the drought continued to spread across eastern Washington.   

Table 2.3(b) indicates the drought severity classes from January 1987 to June 1989 for 

the Yakima basin. By December 1987 all the DMS indicators had met the criteria for the 

onset of drought in the basin. There were no signs of recovery until the following year, 

when drought recovery was finally attained by January 1989, in terms of SPI-3, -6, -12 

and SRI -3, -6. 

Table 2.3 (b) Drought severity classes according to DMS indicators in the Yakima River 
Basin during the 1987-89 drought.  

Month SMP SPI-3 SRI-3 SPI-6 SRI-6 SPI-12 SRI-12 SPI-24 SRI-24 SPI-36 SRI-36 

Jan-87 3 2 2 2 2 2 2 3 4 3 3 

Feb-87 2 4 3 2 2 3 2 3 3 3 3 

Mar-87 1 2 1 2 1 2 2 3 2 3 3 

Apr-87 2 1 1 2 1 2 2 2 2 3 3 

May-87 3 1 1 3 2 2 2 2 2 4 3 

Jun-87 4 3 3 3 2 2 2 3 3 4 4 

Jul-87 3 3 4 2 2 2 2 2 3 4 4 

Aug-87 4 5 4 2 2 2 2 3 3 4 4 
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Sep-87 5 4 5 4 4 3 2 3 3 4 4 

Oct-87 6 6 6 6 5 4 3 4 3 5 4 

Nov-87 6 6 6 6 6 6 4 5 3 6 5 

Dec-87 4 4 4 5 5 4 3 3 3 5 4 

Jan-88 5 3 4 5 5 5 4 4 3 4 4 

Feb-88 4 3 3 5 5 5 4 5 4 4 4 

Mar-88 4 3 4 4 4 5 5 4 4 4 4 

Apr-88 3 1 2 2 3 4 5 4 4 4 4 

May-88 3 1 1 1 3 4 4 3 4 3 4 

Jun-88 1 1 1 1 3 4 4 3 3 4 4 

Jul-88 2 1 2 1 2 4 4 4 3 3 4 

Aug-88 2 2 2 1 1 4 4 3 3 3 4 

Sep-88 4 2 3 1 1 3 4 4 3 4 4 

Oct-88 3 3 3 2 2 2 3 4 3 4 4 

Nov-88 1 1 1 1 1 1 2 4 4 3 3 

Dec-88 2 1 2 2 2 2 3 3 4 3 3 

Jan-89 2 1 2 2 2 1 2 3 3 3 3 

Feb-89 3 4 4 2 3 1 3 4 4 4 4 

Mar-89 3 2 3 2 3 1 3 3 4 3 4 

Apr-89 1 2 2 2 2 2 2 4 4 3 4 

May-89 3 1 1 3 3 2 2 4 4 3 4 

Jun-89 3 3 1 3 2 2 2 4 4 3 4 

 

3.3 2000-2001 Drought 

 

WY 2001 began as a normal year. Although the fall of 2000 was drier and cooler than 

normal, wetter-than-normal weather for the Pacific Northwest was predicted for the 

winter months. The prediction, however, was not realized, and the dry spell persisted 
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throughout the winter of 2001.  Between November 2000 and March 2001, most of the 

state’s precipitation and snowpack totals were approximately 60 percent of normal.  

Considerably below-normal precipitation and snowpack led to a severe statewide drought. 

A statewide drought emergency was declared on March 14, 2001 (Hart et al., 2001), and 

the drought declaration remained in effect until December 2001. 

Figure 2.8 shows spatially aggregated water balance components as they evolved during 

WYs 2001 and 2002.  Although statewide precipitation and SWE were normal 

throughout WY 2000, precipitation dropped below normal at about the beginning of WY 

2001. The significantly below-normal SWE worsened conditions and resulted in far 

below-normal SM and runoff.   

Table 2.4(a) shows the number of WRIAs with a drought severity of class 3 or higher 

from January 2000 to June 2002. None of the indicators showed signs of drought until 

January 2001, when SMP, SPI-3, -6, -12 and SRI-3, -6 met the criteria for the onset of 

drought. This highlights an important feature of the 2000–2001 drought: it developed 

very quickly, much more so than the other droughts we analyzed. Statewide drought was 

declared on March 10, 2001 (Hart et al., 2001), by which time SRI-12 and SPI-24 had 

also met the criteria for the onset of statewide drought.  
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    (a)        (b) 

Figure 2.8: Statewide cumulative precipitation (Precip (Cum.)), average temperature (Av. 
Temp), soil moisture(SM), snow water equivalent (SWE) and cumulative runoff (RO 
(Cum.)) during WY 2001 (a)and 2002 (b)shown against 1950-2005 mean climatology, 
maximum and minimum values for each month.   

 

The statewide drought persisted through December 2001 in terms of most of the 

indicators except SPI-3, which started showing signs of recovery as early as August 2001.  

By November 2001, SPI-6 also indicated recovery from statewide drought.  Despite the 

continuation of drought among all other indicators, the drought declaration was lifted by 

the governor on December 31, 2001. Precipitation since the beginning of WY 2001 was 

well above normal, contributing to an optimistic outlook for the winter snowpack (Hart et 

al., 2001).  The simulated SWE conditions (not shown here) confirm that the state had 

well above normal snowpack during the winter of 2002. The combination of a good 

winter snowpack, normal precipitation during the fall of 2001, and indications of 

recovery by SPI-3 and SPI-6 would have supported the drought management decision.  



www.manaraa.com

  36 

Table 2.4 (a) Number of WRIAs under class 3 or more severe according to DMS 
indicators during the 2000-2001 drought. 

Month SMP SPI-3 SRI-3 SPI-6 SRI-6 SPI-12 SRI-12 SPI-24 SRI-24 SPI-36 SRI-36 

Jan-00 0 0 0 0 0 0 0 0 0 0 0 

Feb-00 7 0 0 0 0 7 0 0 0 0 0 

Mar-00 1 9 11 0 0 0 0 0 0 0 0 

Apr-00 11 12 9 0 0 0 0 0 0 0 0 

May-00 0 5 10 0 0 0 0 0 0 0 0 

Jun-00 0 0 3 2 6 0 0 0 0 0 0 

Jul-00 2 1 2 6 9 0 0 0 0 0 0 

Aug-00 17 30 4 7 8 0 0 0 0 0 0 

Sep-00 18 29 14 1 6 0 0 0 0 0 0 

Oct-00 13 16 28 5 3 0 0 0 0 0 0 

Nov-00 48 46 53 54 36 31 7 0 0 0 0 

Dec-00 58 61 61 60 59 43 30 0 0 0 0 

Jan-01 61 61 61 61 61 53 35 31 1 2 0 

Feb-01 61 61 61 61 61 59 44 55 21 10 0 

Mar-01 61 61 61 61 61 61 57 55 27 10 0 

Apr-01 61 44 61 61 61 59 60 50 33 2 0 

May-01 52 7 56 61 61 61 61 51 38 10 2 

Jun-01 47 0 52 59 61 61 61 49 45 4 3 

Jul-01 44 0 50 25 61 61 61 49 49 3 3 

Aug-01 34 0 48 0 57 61 61 54 50 1 3 

Sep-01 36 38 52 0 54 61 61 54 50 3 4 

Oct-01 43 0 37 0 46 61 61 47 50 0 4 

Nov-01 20 0 15 0 36 58 61 48 53 3 5 

Dec-01 9 0 12 0 27 30 59 47 53 14 14 

Jan-02 7 0 7 0 13 0 45 48 54 14 20 

Feb-02 13 2 8 0 12 0 33 53 55 51 36 
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Mar-02 14 4 3 0 8 0 31 54 57 48 43 

Apr-02 1 16 9 1 4 1 30 54 57 41 41 

May-02 16 3 8 4 5 2 23 57 57 38 43 

Jun-02 22 1 12 6 5 0 15 57 58 44 43 

 

Table 2.4(b) shows how drought severity varied in the Yakima River Basin from January 

2000 to June 2002 in terms of DMS indicators. SMP, SPI-3, -6, -12 and SRI-3, -6 

indicated the onset of drought by January 2001. By the time statewide drought was 

officially declared, all of DMS indicators except SPI-36, SRI-24, -36 met the criteria for 

the onset of drought. For a major part of the rest of the year, many of the indicators 

continued to have a drought severity of class 3 or more. The first indicator to show signs 

of recovery was SPI-3 in August 2001. None of the other indicators except SPI-3 and 

SPI-6 recovered before the statewide drought was officially declared over in December, 

suggesting that the drought may have indeed persisted in the Yakima River Basin.  

 

Table 2.4 (b) Drought severity classes according to DMS indicators in the Yakima River 
Basin during the 2000-2001 drought. 

Month SMP SPI-3 SRI-3 SPI-6 SRI-6 SPI-12 SRI-12 SPI-24 SRI-24 SPI-36 SRI-36 

Jun-00 1 1 1 2 2 1 1 1 1 1 1 

Jul-00 1 1 2 2 2 1 1 1 1 1 1 

Aug-00 2 2 2 2 2 1 1 1 1 1 1 

Sep-00 3 3 3 1 2 1 1 1 1 1 1 

Oct-00 2 2 3 1 2 1 1 1 1 1 1 

Nov-00 4 3 4 4 3 3 2 1 1 1 1 

Dec-00 5 6 6 6 5 4 4 2 1 1 1 

Jan-01 6 6 6 6 6 6 5 3 2 2 1 
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Feb-01 6 6 6 6 6 6 5 5 3 2 2 

Mar-01 6 6 6 6 6 6 6 5 3 2 2 

Apr-01 6 4 6 6 6 6 6 4 3 2 2 

May-01 5 1 5 6 6 6 6 4 3 2 2 

Jun-01 5 1 4 5 6 6 6 4 4 2 2 

Jul-01 3 1 4 3 6 6 6 4 4 2 2 

Aug-01 2 1 4 1 5 6 6 4 4 2 2 

Sep-01 2 3 4 1 4 6 6 4 4 2 2 

Oct-01 3 1 3 1 4 6 6 4 4 2 2 

Nov-01 2 1 1 1 2 4 6 4 5 2 2 

Dec-01 1 1 1 1 1 2 4 4 5 2 2 

Jan-02 1 1 1 1 1 1 3 3 4 2 3 

Feb-02 1 1 1 1 1 1 2 4 4 3 3 

Mar-02 1 1 1 1 1 1 2 3 4 3 3 

Apr-02 1 1 1 1 1 1 1 3 4 3 3 

May-02 1 1 1 1 1 1 1 4 4 3 3 

Jun-02 1 2 1 1 1 1 1 4 4 3 3 

 

3.4 2004-2005 Drought  

 

WY 2005 began with normal to below-normal precipitation in October for all but the 

north Puget South region. The dry spell started in November 2004, and a relatively warm 

winter in 2005 resulted in low snowpack accumulation and early melt. One major feature 

of the 2005 drought was that, like the 2000–2001 drought, it developed quickly.  This 

rapid change in conditions was attributed to a record low snowpack in February and 

March 2005, due in part to a mid-January storm (a so-called “Pineapple Express”) that 

removed much of the accumulated snowpack (Anderson et al., 2005).  Statewide drought 
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was declared in March and recovery from drought was officially declared on December 

31, 2005 (Anderson et al., 2005). 

Spatially aggregated water balance components (Figure 2.9) show that three important 

factors led to the 2004-2005 drought:  (i) less than normal precipitation in the fall of 2004, 

(ii) record low snowpack, and (iii) above normal temperatures.  Higher temperatures that 

were attributed to El Niño conditions resulted in little snow accumulation during the 

winter and brought about earlier snowmelt. SM was below normal throughout the year, 

resulting in adverse impacts on state agriculture.  

Table 2.5(a) shows the number of WRIAs with a drought severity of class 3 or higher 

from January 2004 to June 2006 for the various DMS indicators. WY 2004 started out 

dry, and by June 2004, SMP, SPI-3, -6, -12, -24 and SRI-6, -12, 24, 36 had all met the 

criteria for statewide drought. Although six of these indicators (SMP, SPI-3,  -6, -12, 24 

and SRI-3) showed signs of recovery by December 2004, low fall precipitation and 

winter snowpack caused  SMP, SPI -3, -12, -24 to again fall into drought by the time of 

the state’s declaration on March 10, 2005 (Anderson et al., 2005). As such, DMS 

indicators were in line with the official drought declaration. Due largely to spring storms 

in western Washington, SPI-3 and SPI-6 met the criteria for statewide drought recovery 

in August and October 2005, respectively.  However, none of the other indicators showed 

signs of recovery by the time the drought was declared over in December 2005.  As with 

the 2000–2001 drought, this decision may have been influenced by an above normal 

winter snowpack outlook.  Simulated SWE conditions (not shown here) confirm that the 

snowpack during the winter of 2006 was well above normal. 
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    (a)        (b) 

Figure 2.9: Statewide cumulative precipitation (Precip (Cum.)), average temperature (Av. 
Temp), soil moisture (SM), snow water equivalent (SWE) and cumulative runoff (RO 
(Cum.)) during WY 2005 (a) and 2006 (b) shown against 1950-2005 mean climatology, 
maximum and minimum values for each month.   

 

Table 2.5(b) shows the progression of drought in the Yakima River Basin in terms of the 

severity classes of DMS indicators. By March 2005, all the DMS indicators met criteria 

for the onset of drought.  Although both SPI-3 and SPI-6 indicated drought recovery by 

December 2005 when the statewide drought recovery was officially declared, none of the 

other indicators showed signs of recovery until then. 

Table 2.5 (a) Number of WRIAs under class 3 or more severe according to DMS 
indicators during the 2004-05 drought. 

Month SMP SPI-3 SRI-3 SPI-6 SRI-6 SPI-12 SRI-12 SPI-24 SRI-24 SPI-36 SRI-36 

Jan-04 43 0 26 3 26 17 31 50 44 22 54 

Feb-04 29 36 39 0 26 12 29 51 48 16 46 

Mar-04 44 39 27 16 23 42 46 59 43 20 41 
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Apr-04 54 61 40 50 43 59 59 58 48 35 42 

May-04 57 34 36 39 46 57 56 49 50 21 40 

Jun-04 32 32 49 37 44 42 55 49 53 32 41 

Jul-04 52 7 44 44 46 31 54 47 53 34 40 

Aug-04 35 0 31 12 37 0 50 42 51 17 37 

Sep-04 0 0 12 2 38 0 47 26 49 6 31 

Oct-04 2 0 3 0 24 12 49 12 45 10 32 

Nov-04 3 4 13 0 30 29 52 4 40 42 46 

Dec-04 22 52 28 7 31 27 50 8 41 48 51 

Jan-05 34 56 25 28 23 43 42 48 51 53 52 

Feb-05 43 61 41 56 42 49 44 53 53 58 53 

Mar-05 48 61 47 57 45 43 51 55 53 55 53 

Apr-05 40 57 51 57 46 35 50 55 55 55 54 

May-05 38 0 39 50 51 36 51 52 55 45 54 

Jun-05 21 0 31 35 52 30 50 41 55 44 54 

Jul-05 19 0 32 13 54 24 49 37 54 44 55 

Aug-05 22 3 34 0 39 40 50 34 54 43 55 

Sep-05 42 13 36 0 35 43 51 35 54 41 55 

Oct-05 22 1 28 0 32 42 52 39 54 40 54 

Nov-05 8 0 18 3 35 31 51 39 54 28 52 

Dec-05 43 0 15 1 25 25 50 34 53 29 51 

Jan-06 0 0 0 0 4 0 21 16 40 4 46 

Feb-06 1 0 0 0 2 0 18 16 36 3 38 

Mar-06 8 0 0 0 2 0 15 11 38 29 50 

Apr-06 9 38 15 0 1 0 14 5 32 31 49 

May-06 17 26 25 0 0 0 11 9 32 25 48 

Jun-06 0 6 11 0 0 0 3 6 31 19 43 
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Table 2.5 (b) Drought severity classes according to DMS indicators in the Yakima River 
Basin during the 2004-2005 drought. 

Month SMP SPI-3 SRI-3 SPI-6 SRI-6 SPI-12 SRI-12 SPI-24 SRI-24 SPI-36 SRI-36 

Jan-04 3 1 2 1 2 1 2 3 2 2 3 

Feb-04 2 2 2 1 2 1 2 3 2 2 3 

Mar-04 3 2 2 2 2 2 3 3 3 2 3 

Apr-04 4 6 2 3 2 3 3 4 3 2 2 

May-04 4 4 3 3 3 3 3 3 3 2 3 

Jun-04 3 3 3 3 3 3 3 4 3 2 2 

Jul-04 4 1 3 5 3 3 3 4 3 3 2 

Aug-04 3 1 3 2 3 1 3 3 3 2 2 

Sep-04 1 1 2 1 3 1 2 3 3 2 2 

Oct-04 1 1 1 1 3 2 3 2 3 2 2 

Nov-04 1 2 2 1 3 3 3 2 3 3 3 

Dec-04 2 4 2 2 3 3 3 2 3 3 3 

Jan-05 3 5 3 3 2 4 3 3 3 4 3 

Feb-05 4 6 4 5 3 5 4 3 4 4 3 

Mar-05 5 5 4 5 4 4 4 4 4 4 4 

Apr-05 4 4 4 5 4 4 4 4 4 4 4 

May-05 4 1 3 4 4 4 4 4 4 4 4 

Jun-05 2 1 3 3 5 3 4 3 4 4 4 

Jul-05 1 1 4 2 5 3 4 3 4 4 4 

Aug-05 1 1 4 1 4 4 4 3 4 4 4 

Sep-05 3 2 4 1 4 4 4 3 4 4 4 

Oct-05 2 1 2 1 4 4 4 3 4 3 4 

Nov-05 1 1 1 1 3 3 4 3 4 3 4 

Dec-05 3 1 1 1 2 2 4 3 4 3 4 

Jan-06 1 1 1 1 1 1 2 2 3 2 3 

Feb-06 1 1 1 1 1 1 1 2 3 2 3 
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Mar-06 2 1 1 1 1 1 1 2 3 3 3 

Apr-06 2 4 2 1 1 1 1 2 3 3 3 

May-06 3 3 3 1 1 1 1 2 3 3 3 

Jun-06 1 1 1 1 1 1 1 2 3 2 3 

 

4.  Summary and Conclusions 

 

Washington State has experienced several major droughts, and substantial associated 

economic losses, over the last three decades. Because the state’s water resources are 

strongly dependent on winter snow accumulation, they are susceptible to droughts 

resulting from dry winter conditions, warm winter conditions, or both.  In addition, as the 

climate warms, the sensitivity of the state to drought is likely to increase due to 

reductions in mean snow accumulation.  This vulnerability emphasizes the need for 

proactive drought management and the potential value of a drought monitoring system.  

We have described how such a system, which is based on the SPI, SRI, and SMP as 

indicators of drought, would have performed during four major droughts over the study 

period.   

In this paper, a daily data set covering the period 1915–2006 was aggregated to monthly 

data over the major Water Resource Inventory Areas (WRIAs) of the state. Simulated SM 

data were used to estimate monthly SMP, and monthly precipitation and model-generated 

runoff data were used to estimate SPI-3, -6, -12, -24, -36 and SRI-3, -6, -12, -24, -36.  We 

used these indicators to reconstruct 4 major drought events during the last four decades 

(1976–77, 1987–89, 2000–2001, and 2004–2005), based on 6 drought severity classes, 

for each of the 62 WRIAs in the state.  We also performed an analysis of the progression, 
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persistence, and recession of drought according to these indicators.  We additionally used 

gridded precipitation, SM, and runoff data to depict the spatial pattern of all four drought 

events.  

Our main findings are as follows:  

(1) For drought onset, DMS indicators, primarily SPI-3, -6, -12, SRI-3, -6, and monthly SMP, 

showed the onset of statewide drought at least 0 to 2 months before the state's official 

declarations of the 1976–1977, 2000–2001, and 2004–2005 droughts.  

(2) For drought recovery, DMS indicators, primarily SPI-3, and -6, showed recovery from 

statewide drought at least 0 to 4 months before the state's official declarations in the 

1976–1977, 2000–2001, and 2004–2005 droughts.  

(3) For the Yakima basin, DMS indicators, primarily SPI-3, -6, -12, SRI-3, -6, and monthly 

SMP, showed drought onset at least 0 to 2 months before the state's official declarations 

of the 1976–1977, 2000–2001, and 2004–2005 droughts. 

(4) For the Yakima basin, DMS indicators, primarily SPI-3 and SPI-6, showed drought 

recovery at least 0 to 4 months before the state's official declarations in the 1976–1977, 

2000–2001, and 2004–2005 droughts. 

These results suggest that a DMS can provide a method for early detection of the onset, 

duration, severity, and recovery from drought, and an approach that would allow for 

finer-scale resolution of drought declaration. The DMS approach also provides a 

scientific basis for indicators and triggers that can assist in drought management 

decisions for Washington State and other regions.  There are a number of obvious 
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extensions to the approach we have outlined that will make it useful in real-time drought 

assessments and decision making.  For instance, a DMS at national scale 

(www.hydro.washington.edu/forecast/monitor) based on the approach described by 

Wood and Lettenmaier (2006) is currently used as one of the NOAA Climate Prediction 

Center’s inputs to the U.S. Drought Monitor.  A similar system for Washington State 

(www.hydro.washington.edu/forecast/sarp) is currently made available to state and 

regional water managers. 
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III. SEASONAL HYDROLOGIC PREDICTION IN THE 
UNITED STATES: UNDERSTANDING THE ROLE OF 

INITIAL HYDROLOGIC CONDITIONS AND SEASONAL 
CLIMATE FORECAST SKILL 

 

This chapter has been published in its current form in the journal Hydrology and Earth 

System Sciences: Shukla, S., and D. P. Lettenmaier. 2011. Seasonal hydrologic 

prediction in the United States: Understanding the role of initial hydrologic conditions 

and seasonal climate forecast skill. Hydrol. Earth Syst. Sci. 15, 3529-3538, 

doi:10.5194/hess-15-3529-2011.  

1.  Introduction  

 

Accurate seasonal hydrologic forecast information is a key aspect of drought mitigation 

(Hayes et al., 2005). Seasonal hydrologic/drought prediction systems, such as the Climate 

Prediction Center’s Seasonal Drought Outlook, the University of Washington’s Surface 

Water Monitor  (SWM; Wood and Lettenmaier, 2006; Wood, 2008) and Princeton 

University’s drought forecast system (Wood and Lettenmaier 2006; Wood 2008) provide 

information about the status of hydrologic conditions and their evolution across the 

Conterminous United States (CONUS). However, primarily due to the limited skill of 

climate forecasts beyond the seasonal time scale, seasonal hydrologic forecasts made 

with these systems are currently limited to lead times of 1-3 months. Central to the 

hydrologic forecasts made with these systems is the accurate knowledge of hydrologic 

and/or soil moisture (SM) conditions at the time of the forecast and accurate 

weather/climate forecasts. For example, the Seasonal Drought Outlook derives drought 
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prediction skill from knowledge of initial hydrologic conditions (IHCs) taken from the U. 

S. Drought Monitor (Svoboda et al. 2002) and from weather/climate forecasts at various 

time scales ranging from 6-10 days to 3 months. Alternatively, SWM and the Princeton 

University systems obtain the IHCs by forcing one or more land surface models (LSMs) 

with observed gridded station data up to the time of the forecasts, and then continue the 

LSM runs using either gridded climate data randomly resampled from a retrospective 

period (SWM) or seasonal climate forecasts over the forecast period downscaled for use 

by the LSMs (Princeton University system).  Hence, two key factors limiting the seasonal 

hydrologic forecast skill in all of these systems are (1) uncertainties in the IHCs, 

associated with uncertainties in both the LSM’s prediction skill and forcings over the 

recent past; and (2) climate forecast skill (FS) over the forecast lead time. Thus, to make 

any significant improvements in the current state of seasonal hydrologic forecast skill, the 

focus should be towards improving the controlling factors (the IHCs or FS), which 

presumably vary depending on location, forecast lead time, and time of year. 

Numerous attempts have been made by the hydrologic and climate communities to 

reduce the uncertainties associated with the aforementioned factors. For example, various 

researchers have investigated methods for assimilating snow water equivalent (SWE) 

and/or SM data (Andreadis and Lettenmaier 2006; Clark et al. 2006; McGuire et al. 2006) 

into LSMs to improve the IHCs for seasonal hydrologic prediction. Many attempts have 

also been made in parallel to improve FS (Krishnamurti et al. 1999; Stefanova and 

Krishnamurti 2010). 

The improvement in seasonal hydrologic forecast skill that could result from these efforts 

during any season and location depends on the relative contributions of the IHCs and FS 
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to the skill (Wood and Lettenmaier, 2008; Li et al., 2009). For example, assimilating 

observed data to improve the IHCs is valuable mainly for regions where, at least during 

the first few months of a seasonal hydrologic forecast, the IHCs dominate the prediction 

of SM and runoff. Likewise, improvements in FS can most improve seasonal hydrologic 

forecasts where atmospheric forcings play a more significant role in influencing future 

SM and runoff than the IHCs. Depending on factors such as SM variability at the time of 

forecast initialization, the seasonal cycle, and the variability of precipitation and topology 

of the hydrologic regime, the contribution of IHCs and FS to seasonal hydrologic forecast 

skill can vary significantly (Hayes et al. 2005a).  

Previous studies have identified the major sources of hydrological predictability. Wood et 

al., (2002) assessed the role of IHCs and FS in seasonal hydrological forecasts for the 

southeastern United States during the drought of 2000 and found that dry IHCs 

dominated FS, whereas for the same region in the case of El Niño conditions from 

December 1997 to February 1998, both IHCs and FS contributed to hydrologic 

predictability.  Maurer and Lettenmaier (2003) evaluated the predictability of runoff 

throughout the Mississippi River basin spatially, by season and prediction lead time using 

a multiple regression technique to relate runoff and climate indices (El Ninõ-Southern 

Oscillation and the Arctic Oscillation) and components of the IHCs (SM and SWE). They 

found that initial SM was the dominant source of runoff predictability at lead-1 in all 

seasons except in June-July-August (JJA) in the western mountainous region, where 

SWE was most important. Maurer et al., (2004) used Principal Component Analysis to 

examine contributions to North American runoff variability of climatic teleconnections, 

SM, and SWE for lead times up to a year.  They concluded that knowledge of IHCs, 
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especially when forecast initial conditions are dry, could provide useful predictability that 

can augment predictions of climate anomalies up to 4.5 months of lead time. They found 

statistically significant correlations between March 1 SWE and March-April-May 

(MAM) runoff over parts of the western U.S. and Great Lakes regions and between 

March 1 SWE and June-July-August (JJA) runoff over the Pacific Northwest (PNW), the 

Far West, and the Great Basin. According to Maurer et al., (2004), even in regions where 

runoff variability is dominantly related to climate, SM could be a valuable predictor for 

seasonal lead times. Wood and Lettenmaier, (2008) used an Ensemble Streamflow 

Prediction (ESP)-based framework to conduct ESP and reverse-ESP experiments to 

partition the role of the IHCs and FS in seasonal hydrologic prediction in two western 

U.S. basins. They noted that the skill derived from the IHCs is particularly high during 

the transition from wet to dry seasons, and that climate forcings dominate most during the 

transition from dry to wet seasons. Li et al., (2009) used a similar approach to quantify 

the relative contributions of IHCs and FS in the Ohio River basin and the southeastern 

U.S. They found that relative errors are primarily controlled by the IHCs at a short lead 

time (~1 month); however, at longer lead times FS dominates.  

In a recent study Koster et al., (2010) used a suite of LSMs to evaluate the importance of 

model initialization (SWE and SM) for seasonal hydrologic forecasts skill in 17 river 

basins, mostly in the western U.S. They concluded that SWE and SM initialization on 

January 1st, individually contribute to March-April-May-June-July streamflow forecast 

skill at a statistically significant level across a number of western U.S. river basins. The 

contribution from SWE is especially important in the northwestern U.S., whereas SM 

tends to be important in the southeast. Mahanama et al., (2011) expanded this work to 23 
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basins across the CONUS, for multiple forecast initialization dates, throughout the year. 

They observed that SWE (mainly during the spring melt season) and SM (during the fall 

and winter seasons) provide statistically significant skill in streamfow forecast. 

Furthermore, they found the skill levels to be related to the ratio of standard deviation of 

initial total water storage to the standard deviation of forecast period precipitation (which 

they termed k; see section 2.5). 

The studies reviewed above have used a variety of methods to assess the relative 

contributions of IHCs and FS to seasonal hydrologic forecast skill. Aside from the work 

of Mahanama et al., (2011), it is somewhat difficult to draw general conclusions because 

the frameworks are somewhat inconsistent as are the study domains. In this work, we use 

the ESP-based framework outlined by Wood and Lettenmaier, (2008). This framework is 

applicable over large spatial scales (e.g. continental) and is similar to operational seasonal 

hydrological forecast approaches, hence we used it to address explicitly the relative 

contributions of IHCs and FS to hydrologic forecast skill across the entire CONUS for 

forecast lead times up to 6 months. Specifically, we seek in this study 1) to quantify the 

contributions of IHCs and FS to seasonal prediction of cumulative runoff (CR) and SM 

during each month of the year, and 2) to identify the months and sub-regions within 

CONUS, where improvement in simulating the IHCs and/or FS can have the greatest 

impact on seasonal hydrologic forecast skill. 

2. Approach  

 

We conducted paired ESP and reverse-ESP experiments to generate forecasts with up to 

6 months lead time (i.e. up to 6 months beyond the forecast initialization date) for the 33-
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year reforecast period 1971-2003 over the continental U.S.  In ESP, an LSM is run using 

observed forcings up to the forecast initialization date to generate the IHC. During the 

forecast period, an ensemble of forcings is created from the time series of observations 

(gridded over the model domain, sampled from n historical years) starting on the forecast 

initialization date, and proceeding through the end of the forecast period (up to 6 months 

from the forecast initialization date for this analysis), for each of n historical years.  In 

reverse-ESP, the IHCs on the forecast date are taken from each of the n historical years of 

simulation, but during the forecast period, the model is forced with the gridded 

observations for that year (essentially a perfect climate forecast).   

We used the Variable Infiltration Capacity (VIC) model; a macroscale hydrology model 

(Cherkauer et al. 2003; Liang et al. 1994) that has been extensively used over the 

CONUS and globally (e.g. (Maurer et al., 2001; Nijssen et al., 2001; Adam et al., 2007; 

Wang et al., 2009).  VIC was applied over the CONUS at a spatial resolution of ½ degree 

latitude and longitude. We then spatially aggregated the forecasts generated by each 

experiment to the scale of 48 hydrologic sub-regions across the CONUS (Table 3.1 and 

Fig. 3.1). These 48 sub-regions were created by merging the 221 U.S. Geological Survey 

(USGS) hydrologic sub-regions. Each sub-region is named after the water resources 

region in which it is located (Table 3.1). We compared the spatially aggregated 

forecasted cumulative runoff (CR) and mean monthly SM with the corresponding 

observations (section 2.2) for each sub-region and lead time over the reforecast period.  

We then estimated a forecast evaluation score (section 2.4) and quantified the 

contributions of the IHCs and FS to seasonal hydrologic forecast skill. 
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2.1  Model implementation 

  

The VIC model parameterizes the major surface, sub-surface, and land-atmosphere 

hydrometeorological processes and represents the role of sub-grid spatial heterogeneity in 

SM, topography, and vegetation on runoff generation (Liang et al. 1994). We ran the  

 

Figure 3.1: 48 hydrologic sub-regions of the CONUS used in this study, based on 
aggregation of 221 USGS sub-regions. 

 

Table 3.1: List of USGS water-resources regions. 

Region 01 New England (NE) 

Region 02 Mid-Atlantic (MA) 

Region 03 South Atlantic-Gulf (SAG) 

Region 04 Great Lakes (GL) 

Region 05 Ohio (OH) 
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Region 06 Tennessee (TN) 

Region 07 Upper Mississippi (UM) 

Region 08 Lower Mississippi (LM) 

Region 09 Souris-Red-Rainy (SRR) 

Region 10 Missouri (MO) 

Region 11 Arkansas-White-Red (AR) 

Region 12 Texas-Gulf (TX) 

Region 13 Rio Grande (RG) 

Region 14 Upper Colorado (UC) 

Region 15 Lower Colorado (LC) 

Region 16 Great Basin (GB) 

Region 17 Pacific Northwest (PNW) 

Region 18 California (CA) 

 

model in water balance mode, in which the moisture budget is balanced at a daily time 

step and model’s surface temperature is assumed to equal surface air temperature for 

purposes of energy flux computations (e.g., those associated with evapotranspiration and 

snowmelt).  The model was run at a daily time step, except for the snow accumulation 

and ablation algorithm, which was run at a 3-hour time step. The ½ degree parameters 

(i.e. vegetation, soils, elevation and snow band parameters) used in this study are the 

same as in Andreadis et al., (2005), which were aggregated from the North America Land 

Data Assimilation System parameters used in Maurer et al. (2002). The three VIC soil 

layers had typical depths of ~0.10 m for the first layer, 0.2 to 2.3 m for the second layer, 

and 0.1 to 2.5m for the third layer. Additional details of the model setup are included in 

Maurer et al. (2002) and Andreadis et al., (2005). 
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2.2  Synthetic truth data set 

 

For purposes of evaluating forecast skill, we used a set of baseline values of SM and CR, 

created by a VIC control run with gridded observed forcings, as synthetic truth. We 

constructed the standard set of VIC forcings (daily precipitation, maximum and minimum 

temperatures, and wind speed) using methods outlined in (Maurer et al. 2002). 

Precipitation and temperature forcings were generated using the Index Station method 

(Tang et al., 2009; Wood and Lettenmaier, 2006) which uses a high quality set of about 

2100 precipitation and temperature stations across the CONUS that have relatively little 

missing data over our period of analysis. As in (Maurer et al., 2002), we used surface 

wind from the lowest level of the National Centers for Environmental Protection/National 

Center for Atmospheric Research reanalysis (Kalnay et al. 1996). Other model forcing 

variables (downward solar and longwave radiations, humidity) were derived from daily 

temperature and temperature range as in (Maurer et al., 2002).  We first ran the model for 

the period 1916-1969 starting from a prescribed initial state and saved the IHCs at the 

end of the simulation. Using those IHCs, generated after 53 years of spin-up, we 

initialized the control run simulation over 1970-2003. The same IHCs were also used for 

generating IHCs for the 1st day of each month during each year of the reforecast period 

(1971-2003). We aggregated the model’s CR (i.e. sum of surface runoff and baseflow) 

and SM (i.e. sum of soil moisture of all three layers) to monthly values and spatially 

aggregated them to the 48 hydrologic sub-regions. These model-derived values served in 

lieu of direct observations for the purposes of our analyses. (Maurer et al., 2002) and 

others have shown that when the VIC model is forced with high quality observations, it is 

able to reproduce SM and streamflow well across the CONUS domain. 
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2.3  ESP and reverse-ESP implementation 

 

In our implementation of ESP, we obtained the IHCs from a control run simulation 

(section 2.2).  Given the IHCs on the first day of each month from 1971-2003, we then 

forced the model with 31 ensemble members of observed (gridded) forcings (sampled 

from 1971-2001) starting on the forecast date for a period of six months. For example, to 

start the forecast on 01/01 (i.e. January/01) of any year i, we used IHC at the 00:00 hour 

of the day i/01/01 and ran the model with forcings from j/01/01 to j/07/01 of each year j 

between 1971-2001. Fig. 3.2 (b) shows a schematic of the experimental design where 

“true” IHCs were used to initialize the model and it was forced with resampled gridded 

observations.  

The reverse-ESP experiments sampled 31 IHCs from the retrospective IHCs for each 

forecast initialization date (day 1 of each month) from 1971-2001. For example, to start 

the forecast on 01/01 of any year i, we used IHC at the 00:00 hour of the day j/01/01 of 

each year j between 1971-2001, and forced the model with gridded observations for the 

period i/01/01 to i/07/01. As shown in Fig. 3.2 (c), in the reverse-ESP experiment 

climatological IHCs (from the same simulation run used to extract the IHCs for the ESP 

runs) were used to initialize the model and it was forced with “true” observations during 

the forecast period. CR and SM were computed as in the ESP experiment. 



www.manaraa.com

  56 

 

Figure 3.2: Schematic diagram of (a) Observational analysis (b) ESP and (c) reverse-ESP 
experiments. 

 

2.4  Forecast evaluation 

  

The skill of both ESP and reverse-ESP forecasts was calculated based on the Root Mean 

Squared Error (RMSE) of forecasts of both CR and SM at lead times of 1 to 6 months for 

each hydrologic sub-region. Let N be the total number of IHC or forcing ensembles 

(1971-2001), and M be the number of years (1971-2003) for which the reforecasts were 

generated.  We designate Eijk  as the CR or SM generated by the ESP experiment using 

the IHC of year i and forcing of year j at a lead time k.   Let Oik  be the observed CR or 

SM obtained from the baseline run as the synthetic truth for year i and lead time k. 
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Likewise let Rijk be the CR or SM generated by the reverse-ESP experiment using the 

IHC of year j and forcing of year i at a lead time k so RMSE
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can be estimated by: 
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We then calculated, the ratio of RMSE of each experiment [Eq. 3]. 

RMSE Ratio = RMSE
ESP

RMSE
revESP

     (3) 

Unless otherwise specified, we consider that if the ratio is less than 1 then IHCs dominate 

(in a relative sense) the seasonal hydrologic forecast skill and if it is greater than one then 

FS dominates. 

2.5  k  parameter 

 

Mahanama et al., (2011) introduced a parameter, k, which is the ratio of the standard 

deviation of the historical values of initial moisture (i.e. sum of the soil moisture and 

snow water equivalent on the forecast initialization date) (sw) to the standard deviation of 

the historical precipitation total during the forecast period (i.e. 1 month, 3 months and 6 

months since the start of the forecast period) (sP) [Eq 4]. High k values correspond to 

high total moisture variability at the time of forecast initialization relative to precipitation 
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variability during the forecast period and vice versa. k is basically a measure of the 

hydrologic predictability derived solely from knowledge of the IHCs at the start of the 

forecast period.  

 k  =  sw  /  sP          (4) 

3.  Results 

 

In this section we examine the variation of relative contributions of the IHCs and FS in 

the CR and SM forecast with each forecast initialization date (i.e. day 1 of each month) 

for lead times of 1 to 6 months across the CONUS. We also highlight the sub-regions and 

forecast periods for which improvement in knowledge of IHCs or FS would most 

improve seasonal hydrologic forecast skill. 

3.1  Cumulative runoff forecasts 

 

The variation of RMSE ratio for the forecast of CR at lead 1 to 6 months for each of the 

48 hydrologic sub-regions is shown in Fig. 3.3 (a) and (b); where CR at lead-1 [lead-6] is 

the CR over the first month [1 to 6 month] of the forecast period. RMSE ratios below 1.0 

indicate that the relative forecast error due to uncertainties in the FS is lower than the 

error due to uncertainties in the IHCs; which indicates the relatively high contribution of 

the IHCs in the CR forecasts skill. The variation of the RMSE ratio is much different 

across sub-regions and forecast periods (Fig. 3.3). The IHCs strongly dominate CR 

forecasts during winter and spring (March and April mainly) months over GL, SRR, UM, 

and MO-1 sub-regions. The dominance of the IHCs in CR prediction over MO-1 sub-

region, almost throughout the year is an observation made by Maurer and Lettenmaier 
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(2003) as well.  

 

Figure 3.3: Variation of RMSE ratio (RMSE
ESP

RMSE
revESP

) with lead time over 48 
hydrologic sub-regions, for the CR forecasts at lead 1-6 months, initialized on the 
beginning of each month. (DJF: blue, MAM: green, JJA: light brown and SON: red) 
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In the western U.S., sub-regions such as PNW, GB, LC, UC, CA, and RG-1, high skill 

due to the IHCs in lead 1-6 months CR forecasts is mainly apparent during spring 

(MAM) and summer (mainly June) months. Wood and Lettenmaier (2008) also found 

dominance of the IHCs in the seasonal runoff forecast during winter/spring transition 

months over two western U.S. basins. This finding suggests that runoff forecasts in the 

above-mentioned sub-regions and forecast periods could benefit substantially from 

improvements in knowledge of the IHCs. For sub-regions in the eastern U.S. such as NE, 

MA, SAG-1 and -2, OH-1 and -2, and UM, RMSE ratios are less than one for lead 1-2 

months, for CR forecasts initialized during winter (December-January-February (DJF)) 

and spring month (March and April, mainly). This finding is in agreement with Li et al. 

(2009) who noted that the IHCs dominate the streamflow (and SM) forecasts made 

during January and July, over Ohio and southeastern U.S. sub-regions, up to lead 1 month. 

These sub-regions as well could potentially benefit from improvements in estimates of 

the IHCs during these seasons. Aside from those months and locations, FS dominates the 

CR forecasts. Some sub-regions such as TN, LM, and SAG-3 stand out because their 

RMSE ratios throughout the entire year and for all lead times exceeds 1, which suggests 

that in those sub-regions improved hydrologic forecasts must, for the most part, await 

improvements in FS.  

There is also a clear difference between the variations of RMSE ratio initialized from wet 

vs dry IHCs. For example, in most sub-regions across the CONUS, forecasts initialized 

during summer months have RMSE ratios less than or equal to 1 for lead-1 month CR 

forecasts (also shown by Wood and Lettenmaier, 2008 and Li et al., 2009) for forecasts 

initialized during summer months. Furthermore the rate of change in the RMSE ratio for 
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1-month vs 6-month forecasts is much higher in forecasts initialized in the summer 

months than in winter and spring months when the IHCs are generally wet. This property 

is particularly significant for predictions during droughts when the IHCs are dry. It 

potentially means that during a drought event when the IHCs are dry, the signal from the 

IHCs may dominate even at lags for which the RMSE ratio exceeds 1. Additionally, in 

climatologically wet periods followed by dry initial conditions, FS may well be important 

in improving seasonal hydrologic forecasts. 

 

Figure 3.4: Plot of the maximum lead (in months) at which RMSE Ratio is less than 1, 
for CR forecasts, initialized on the beginning of each month. 

 

Fig. 3.4 shows the maximum lead time (in months) at which the RMSE ratio of CR 
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forecasts is below 1; defining the maximum lead time the IHCs can play a significant role 

in CR forecasts relative to FS. Beyond this lead, FS dominates the CR forecast skill; 

hence improvement in the FS would lead to higher forecast skill. For the most part, the 

sub-regions in northeastern and southeastern U.S. would benefit most from improvements 

in FS throughout the year because the IHCs dominate up to lead-2 only. In the 

mountainous west and Pacific Coast sub-regions FS dominates mainly during fall and 

winter. On the other hand, IHCs dominate in those sub-regions during spring and summer 

for up to 6 months lead time. GL, SRR, and UM sub-regions overall would benefit most 

from improvement in knowledge of IHCs during winter and spring months (mainly 

March) and FS during summer months.  

3.2  Soil moisture forecasts  

 

SM is a key hydrologic state variable, and a natural indicator of agricultural drought. Fig. 

3.5 shows the RMSE ratios of the mean monthly SM forecast, at lead-1 (i.e. mean 

monthly SM of the first month) to 6 (i.e. mean monthly SM of the 6th month of the 

forecast period) for forecasts initialized on the beginning of each month. In contrast to 

forecasts of CR, the RMSE ratio at lead-1 is almost always less than 1, across the 

CONUS and for each forecast period, indicating the strong dominance of IHCs for short 

lead forecasts. The ratio increases for leads greater than 1. 

In the NE, MA, SAG, OH, LM, and TN sub-regions the influence of IHCs beyond lead-1 

is generally negligible, which in turn means that improvement in FS will be required to 

improve SM forecasts beyond lead-1. This pattern for SM forecasts was also shown by Li 

et al. (2009) in the Ohio and southeastern regions. Conversely, in the majority of the sub-
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regions in the Midwestern U.S., such as GL-1, -2, -3; SRR, UM, and the western U.S. 

show strong IHC influence for SM forecasts up to lead-5, when the forecast is initialized 

in winter or spring months.  In snowmelt-dominated sub-regions in the western U.S., the 

skill of SM forecasts during spring and summer months is especially high. In UC, LC, 

PNW, GB, and CA sub-regions, useful skill in SM forecasts can be derived from the 

IHCs for leads as long as 6 months for forecasts initialized during the summer months. 

Overall, the relative contributions of IHCs are greater for forecasts of SM than for 

forecasts of CR.  The contribution of IHCs is dominant over the western U.S., in 

particular during spring and summer months. 

Following the same criterion as we used for CR forecasts, Fig. 3.6 shows the maximum 

lead time at which the RMSE ratio is below 1 for mean monthly SM forecasts. In general 

most of the sub-regions have some SM forecasts skill derived by the IHCs, at least up to 

lead-1 (including sub-regions in northeastern and southeastern U.S.). This means that the 

relative contribution of the IHCs in the SM forecasts is more extensive than in the CR 

forecasts during the first month of the forecast period (i.e. lead-1). The spatial contrast 

between the sub-regions and forecast periods with high and low values of maximum lead 

time, where IHCs significantly influence the SM forecasts skill, is similar to CR forecasts. 
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Figure 3.5: Variation of RMSE ratio (i.e. RMSE
ESP

RMSE
revESP

) with lead time over 48 
hydrologic sub-regions, for the SM forecasts at lead-1 to 6 months, initialized on the 
beginning of each month. (DJF: blue, MAM: green, JJA: light brown and SON: red) 
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3.3  Controls on hydrologic forecast skill  

  

Mahanama et al., (2011) found a first order relationship between IHC-based 3-month 

streamflow forecasts (that is, forecasts wherein CR was regressed on the IHCs) and k. 

Following their analogy we expect a first order relationship between the inverse RMSE 

ratio (i.e. ) and k. Namely, we expect that RMSE
ESP

 should be 

smaller for sub-regions and forecast periods with higher k. Scatter of the inverse RMSE 

ratio and k are shown for forecast periods of 1, 3, and 6 months in Figs. 3.7a, b, and c, 

 

Figure 3.6: Plot of the maximum lead (in months) at which RMSE Ratio is less than 1, 
for mean monthly SM forecasts, initialized on the beginning of each month. 

 

RMSE
revESP

RMSE
ESP



www.manaraa.com

  66 

respectively. Red circles and blue circles show the inverse RMSE ratio estimated across 

all the hydrologic sub-regions and forecast initialization dates for the forecast of CR and 

mean monthly SM at lead-1, lead-3, and lead-6. (Figs. 3.7a, b, and c, respectively)  The 

values of k vary for different forecast periods, and in general, the number of hydrologic 

sub-regions and forecast periods with k>1 decreases as the lead time increases. First order 

relationships between the inverse RMSE ratio and k clearly exist at each lead time. The 

range of inverse RMSE ratios for a given k value seems to be higher for CR at lead-1 

than for SM (Fig. 3.7(a)). Overall at lead-1, the inverse RMSE ratio is higher for SM than 

for CR. The values of the inverse RMSE ratio of SM and CR forecast is much more 

comparable in lead-3 forecast (Fig. 7 (b)). The inverse RMSE ratio for lead-6, CR 

forecast is generally higher than its corresponding values for SM forecasts at lead-6 (Fig. 

3.7 (c)).  
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Figure 3.7: Inverse RMSE ratio (i.e. RMSE
revESP

RMSE
ESP

) of CR and mean monthly 
SM forecasts at (a) lead-1 (b) lead-3, and (c) lead-6 plotted against κ parameter of each 
forecast period (i.e. 1 month, 3 months, and 6 months respectively)  

 

4.  Summary and conclusions 

 

The two key factors influencing seasonal CR and SM forecast skill are IHCs and FS. In 

order to improve seasonal hydrologic forecast skill in the CONUS, it is important to 

understand the seasonal and spatial variability of relative contributions of these 

components. We performed two modeling experiments -- ESP and reverse-ESP -- in 

which the hydrologic prediction skill exploits knowledge of IHCs and FS respectively to 

quantify the relative contributions of each factors and to identify the sub-regions and 

forecast periods which can benefit most from improvements in the FS or knowledge of 

the IHCs. Our key findings are: 

(1) IHCs generally have the strongest influence over CR and SM forecasts at lead-1, beyond 
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which their influence decays at rates that depend on location, lead time, and forecast 

initialization date.  

(2) Beyond lead-1, IHCs primarily influence the CR and SM forecasts during spring and 

summer months, mostly over the western U.S. 

(3) FS dominates CR and SM forecast skill beyond lead-1 mainly over the northeastern and 

southeastern U.S. throughout the year. For the rest of the CONUS, FS generally 

dominates CR and SM forecasts during fall and early winter months. 

(4) The relative contributions of IHCs and FS have a first order relationship with the ratio of 

initial total moisture variability to the variability of precipitation during the forecast 

period for the temporal scale of seasonal hydrologic prediction. 

While the ESP-based framework used in this study allows a consistent estimation of the 

contribution of the IHCs and FS over large spatial scale (e.g. continental scale) and long 

time period, it is important to understand the limitations of the study design. The 

distribution of FS (in the ESP experiment) and IHCs (in the reverse-ESP experiment) is 

unconditional (i.e. climatological distribution) and we assume that IHCs (in the ESP 

experiment) and FS (in the reverse-ESP experiment) are perfect, hence our results 

arguably provide an upper bound on the contributions of the IHCs and FS to seasonal 

hydrologic prediction skill. Furthermore since we do not route the runoff through the 

stream network and rather use spatially aggregated values, there will be some difference 

in the spatial extent and lead time of the contribution of IHCs (mainly snow-melt) in 

streamflow based on the time of concentration of a given basin, although this effect can 

be expected to be limited, for the most part, to about a month. 
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We believe the findings of this study could have important implications for the 

improvement of seasonal hydrologic and drought prediction in the CONUS. We 

identified the sub-regions and forecast periods during which improvement in the 

knowledge of IHCs and FS could result in the most improvement in seasonal hydrologic 

prediction skill.  For those river basins and forecast periods which have a substantial 

contribution of IHCs to seasonal hydrologic prediction skill, for instance, skill 

improvements might be derived by improving the IHCs - for example through the 

assimilation of ground based or remote sensing data. Another possible way of improving 

seasonal hydrologic forecasts with relatively short leads may be to exploit the skill of 

medium range weather forecasts over the first 1-2 weeks of the forecast period. 
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IV. VALUE OF MEDIUM RANGE WEATHER FORECASTS IN 
THE IMPROVEMENT OF SEASONAL HYDROLOGIC 

PREDICTION SKILL 
 

This chapter has been submitted in its current form and currently in review in the journal 

Hydrology and Earth System Sciences: Shukla, S., N. Voision, and D. P. Lettenmaier. 

2012. Value of medium range weather forecasts skill in seasonal hydrologic prediction.  

Hydrol. Earth Syst. Sci. 9, 1827-1857, doi:10.5194/hessd-9-1827-2012 

1. Introduction 

 

Droughts are among the most expensive natural disasters (Ross and Lott 2003). Proactive 

risk-based approaches to drought management that include better monitoring, early 

warning and prediction, are essential for mitigating drought losses (Schubert et al. 2007). 

Seasonal hydrologic and drought prediction systems, such as the NOAA Climate 

Prediction Center’s seasonal drought outlook, derive their skill from knowledge of initial 

hydrologic conditions (IHCs) and weather/climate information during the forecast period. 

The contribution of IHCs and climate forecast skill in seasonal hydrologic prediction 

varies seasonally, spatially and with lead-time. Over the Conterminous United States 

(CONUS), (Shukla and Lettenmaier 2011) found that IHCs generally dominate at short 

leads (i.e. 1-2 months) while climate forecast skill dominates for longer leads, although 

IHCs can account for a substantial part of the total hydrologic forecast skill under some 

conditions for leads of as long as 6 months. .  

Macro-scale land surface models (LSMs) provide a reasonably accurate estimate of IHCs 

at the time of forecast initialization for seasonal hydrologic prediction. For example, 
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seasonal hydrologic/drought prediction systems, such as The National Centers for 

Environmental Prediction’s (NCEP) drought monitor 

(http://www.emc.ncep.noaa.gov/mmb/nldas/forecast/TSM/prob/) and the University of 

Washington’s Surface Water Monitor 

(http://www.hydro.washington.edu/forecast/monitor/outlook/index.shtml), use IHCs 

generated by LSMs. Within the multi-institutional North American Land Data 

Assimilation System project (Mitchell et al. 2004, 1999), a suite of large scale hydrologic 

models have been developed and tested over the CONUS for their ability to simulate 

various hydrometeorological processes (Cosgrove et al. 2003; Luo et al. 2003; Pan et al. 

2003; Sheffield et al. 2003; Schaake et al. 2004; Xia et al. 2011a; b)  

Simultaneously, major strides have been made toward understanding the sources of 

predictability of seasonal precipitation and temperature in the U.S. (Higgins et al. 2000) 

and improving climate forecasts (O’Lenic et al. 2008). Statistical and physical modeling 

approaches can exploit predictability in the climate system primarily via the thermal 

inertia present in sea-surface temperatures (Barnston et al. 1999), especially during strong 

El Niño/La Niña-Southern Oscillation years.  Otherwise, precipitation forecast skill 

beyond a month or so is quite limited (Quan et al. 2006; Wilks 2000). Precipitation 

forecast skill is generally lower than the skill of forecasts for temperature or atmospheric 

circulation patterns for the same location and time (Wilks and Godfrey 2002; Gong et al. 

2003; Lavers et al. 2009; Barnston et al. 2010). Since precipitation is the major driver of 

drought conditions, seasonal drought prediction skill is severely limited by the lack of 

precipitation forecast skill under most conditions. The difficulty of forecasting rainfall, 
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 mainly during summer, has been a major stumbling block for the CPC’s seasonal 

drought outlook as well (Hayes et al. 2005). 

Due to limited seasonal climate forecast skill, seasonal hydrologic prediction skill comes 

in substantial part from IHCs (Lettenmaier and Wood 2009). One potential means for 

improving seasonal hydrologic prediction is to better exploit medium range weather 

forecasts (MRWFs) for the first 14 days of a seasonal forecast period.  MRWFs have 

greatly improved in the last two decades as increased computer power and more 

integrated observation systems have allowed general circulation models to run at finer 

resolutions with improved initializations (Pappenberger et al. 2005). MRWFs have been 

coupled with LSMs to provide flood and streamflow forecasts for lead times of up to 2 

weeks, using both deterministic and probabilistic approaches (Clark and Hay 2004b; 

Werner et al. 2005; Hou et al. 2009; Thielen et al. 2009; Voisin et al. 2011) . Werner et al. 

(2005) found that incorporating 14-day precipitation and temperature forecasts from a 

MRWF model into the National Weather River Forecast System’s traditional ESP 

forecast system generally improved the streamflow forecast skill for up to 18 days. Hou 

et al. (2009) evaluated the Global Ensemble Forecast System of NCEP coupled with the 

Noah LSM for its ability to provide useful streamflow forecast skill. They concluded that 

the coupled system has some positive streamflow forecast skill at lead times varying from 

1-3 days for smaller basins and more than 7-10 days for large river basins.  

The use of MRWFs has been mostly limited to up to two weeks in lead-time and their 

value in improving hydrologic prediction at seasonal scale is largely unexplored so far. 

By merging MRWFs  (~14 day lead) with seasonal climate forecasts, seasonal hydrologic 

prediction skill could potentially be i) improved at short lead times (~1-2 months) and ii) 
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extended in time beyond what is derived solely from the IHCs; particularly in those cases 

when climate forecasts at even short lead times have skill that is no better than 

climatological.   

The goal of this study is to assess the contribution of MRWFs in seasonal hydrologic 

prediction. Specifically, we evaluate the potential of MRWFs to improve seasonal 

hydrologic forecast skill relative to that achievable by the Ensemble Streamflow 

Prediction (ESP) approach.  ESP  (Day 1985; Franz et al. 2003) is a method that involves 

running an LSM up to the forecast initialization date using observed forcings, and then 

producing ensembles by resampling time sequences of forcings from years in the historic 

record.  Hence, its skill is derived solely from knowledge of IHCs.  We evaluate the 

additional forecast skill derivable from MRWFs in the context of hydrologic ensembles 

of monthly runoff and mean monthly soil moisture (SM) at leads from one to several 

months. 

2. Approach 

 

Three ESP-based experiments were conducted. The basic framework for each experiment 

was the same: IHCs were derived by running an LSM using observed meteorological 

forcings until the date of forecast initialization, i.e. on the first of each month in the 1980-

2003 period. In forecast mode, the LSM was forced with 6-month long observed 

meteorological forcings resampled from the historical period (23 ensemble members in 

the 1980-2003 period when the year of the forecast was excluded) and starting on the day 
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of the forecast, i.e. on the first of each month. The experiments differed in the forcings 

for the first 14 days of the forecasts period as follows:  

- The first experiment  (hereafter referred to as ESP) used the conventional ESP 

framework (Fig. 4.1a) as in Wood and Lettenmaier 2006; 2008; Wood et al. 2002; Li et al. 

2009), and Shukla and Lettenmaier, 2011). It defines the baseline seasonal hydrologic 

prediction skill. 

 

Figure 4.1: Schematic showing the climate forecast framework for (a) Experiment-1 
(ESP) (b) Experiment-2 (OBS_Merged_ESP) and (c) Experiment-3 (MRF_Merged_ESP). 

 

-  In the second experiment (hereafter referred to as OBS_Merged_ESP), the first 14 days 

of each ESP ensemble member were replaced with observations (i.e. perfect MRWF). For 
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example, as shown in Fig. 1b, the forcings used for days 1 to 14 were the observations 

during that period (deterministic perfect forecast), beyond which the forecast ensemble 

members were the same as in ESP. OBS_Merged_ESP defines the maximum 

improvement in seasonal hydrologic prediction skill that can be obtained if perfect 

knowledge of the LSM forcings could be extended to 14 days in the future.  

-  The third experiment (hereafter referred to as MRF_Merged_ESP) is similar to the 

second experiment, but observations for the first 14 days in each ensemble member were 

replaced with a deterministic MRWF (Fig. 4.1c).  This experiment defines the actual 

improvement in seasonal hydrologic prediction skill that can be derived from use of 

realistic weather forecasts over those 14 days.  The skill contributed by these forecasts 

may also be limited by the need to downscale the MRWF to the spatial resolution of the 

hydrologic model (one-half degree in the case of our experiments).   

The skill of each experiment was estimated with respect to the “simulated observed” 

values (hereafter referred to as reference values) of runoff and SM, which were treated as 

surrogates for observations.  The reference runoff and SM were obtained from a 

consistent long-term (1980-2003) simulation of the Variable Infiltration Capacity (VIC) 

LSM (section 2.1.1) forced with observed gridded station data (see section 2.1.2).  

2.1 LSM and forcing data 

2.1.1 The Variable Infiltration Capacity (VIC) model 

 

The VIC macro-scale hydrology model (Liang et al. 1994; 1996; Cherkauer et al. 2003) 

was run at a daily time step and ½ degree latitude-longitude spatial resolution. The VIC 

model includes a parameterization for spatial variability of the infiltration capacity (and 
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hence variability of runoff) and evaporation from different vegetation types, as well as 

bare soil evaporation. It provides for non-linear dependence of the partitioning of 

precipitation into infiltration and direct runoff as determined by soil-moisture in the upper 

layer and its spatial heterogeneity. The subsurface is partitioned into three layers. The 

first layer has a fixed depth of ~10 cm and responds quickly to changes in surface 

conditions and precipitation. Moisture transfers between the first and second, and second 

and third soil layers are governed by gravity drainage, with diffusion from the second to 

the upper layer allowed in unsaturated conditions. Base flow is a non-linear function of 

the moisture content of the third soil-layer (Todini 1996; Liang et al. 1994). The model 

was run in water balance mode; which means that the surface temperature is assumed 

equal to the surface air temperature, and is not iterated for energy balance closure (this 

also implies zero ground heat flux). The VIC model represents the snowpack as a two-

layer medium (a thin surface, and a thick deeper layer), and solves an energy and mass 

balance as part of its computation of pack ablation (Andreadis et al. 2009).  

2.1.2 Retrospective simulation (Control Run) 

  
Arguably observed discharge could be used as reference in order to evaluate forecasted 

monthly runoff. However, there is no such proxy available for evaluation of forecasted 

monthly mean soil moisture, and we therefore chose to use an historic reference 

simulation as the basis for evaluation of both runoff and soil moisture.  A consistent data 

set of runoff and mean monthly SM over the analysis period (1980-2003) to be used as 

the reference was generated by forcing the VIC model with observed gridded 

meteorological forcings over the analysis period.  This simulation also included a >50 
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years model spinup. The model forcings (daily precipitation, and maximum (Tmax) and 

minimum (Tmin) temperature) were taken from Cooperative Observer Program stations, 

and gridded using methods outlined in Maurer et al. (2002).  Additional model forcings 

(downward solar and longwave radiation, and humidity) were estimated from the daily 

air temperature and temperature range following methods outlined in Maurer et al. (2002). 

Surface wind was taken from the lowest level of the NCEP/NCAR reanalysis (Kalnay et 

al. 1996). The IHCs for each forecast initialization day used in the experiments were 

provided by this control run. 

2.1.3 Weather forecasts 

 

We used the 1979-2005 15-day 12-hourly 2.5-degree NCEP/Climate Diagnostics Center 

(CDC) Medium Range Forecast (MRF) reforecast dataset of (Hamill et al. 2006). The 

Hamill et al. (2006) data set uses a fixed version (1998) of the NCEP global forecast 

model and hence should have nearly consistent (aside from some differences in the data 

that were available for assimilation) forecast skill over the period of analysis.   The 

reforecasts were downscaled from their native resolution (2.5 degree) to the 0.5-degree 

scale of the hydrology model and bias corrected to be consistent with the meteorological 

forcings used in the LSM spinup and reference simulation. The downscaling was 

performed by first aggregating the 12-hourly ensemble mean forecasts to 14 days, then 

interpolating the ensemble averages using an inverse squared distance interpolation 

scheme (Shepard 1984; Voisin et al. 2010). Figs. 4.2 and 4.3 show the Spearman rank 

correlation between the observed and downscaled forecasts (at ½ degree resolution) of 

14-day accumulated precipitation and 14-day mean average daily temperature. The 
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downscaled and accumulated 14-day weather forecasts were subsequently bias corrected 

by rescaling so that the long term 14-day accumulated mean precipitation and average 

Tmax and Tmin matched the corresponding values from the observed gridded forcings 

over the 1980-2003 period. The 14-day downscaled and bias corrected forecasts were 

then temporally disaggregated to a daily time scale by multiplying [adding] the non-bias 

corrected 14 days daily forecasts with the ratio [shift] of 14-day bias corrected and non 

bias corrected total precipitation [average temperature] values. More elaborate “weather 

pre-processors” could have been used (e.g., Schaake et al., 2007; Voisin et al., 2010); 
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Figure 4.2: Correlation between observed and forecasted (MRF) 14-day accumulated 
precipitation during each month.  

 

however, we focus here on the implications of weather forecasts of the first 14 days on 

seasonal hydrological forecasts.  

 

 

Figure 4.3: Correlation between observed and forecasted (MRF) 14 days mean average 
daily temperature during each month. 

Although the daily sequencing of events is less important than the aggregate quantities 

for this analysis, rescaling the MRF daily values to match the 14 day precipitation total 
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[average temperature] preserves the daily variability of the precipitation [temperature] in 

the MRF weather forecast dataset and also insures that the daily variability over the first 

14 days of each MRF_MERGED_ESP ensemble experiment is preserved for a given 

forecast period.    

Merging the 14-day ensemble mean forecasts, rather than each ensemble member, into 

the ESP forecasts avoids complications in merging the ensemble members (Clark et al. 

2004) and limits the impact of the calibration and downscaling approaches on the 

ensemble forecast skill. The bias correction and spatial disaggregation approach in 

general reduces or eliminates biases, but does not preserve probabilistic information 

inherent in the forecasts (Voisin et al., 2010). Here we evaluate the potential 

improvement in seasonal hydrologic prediction from merging MRF with ESP, assuming 

that the information in the MRF ensemble is not calibrated and only the ensemble mean 

forecast is useful for our application.  

 

2.2  Forecast skill  score 

 

For simplicity, daily spatially distributed runoff and SM forecasts and reference values 

(obtained from the control run) were aggregated in time to monthly accumulations or 

averages, and to the spatial scale of 48 hydrologic sub-regions across the CONUS domain 

(Table 1). These sub-regions are the same as the sub-regions used in Shukla and 

Lettenmaier (2011) and were created by merging the 221 USGS hydrologic sub-regions. 

Each of the sub-regions is named after the water resources region in which it is located 

(Table 4.1). 
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Table 4.1: List of USGS water-resources regions 

Region 01 New England (NE) 

Region 02 Mid-Atlantic (MA) 

Region 03 South Atlantic-Gulf (SAG) 

Region 04 Great Lakes (GL) 

Region 05 Ohio (OH) 

Region 06 Tennessee (TN) 

Region 07 Upper Mississippi (UM) 

Region 08 Lower Mississippi (LM) 

Region 09 Souris-Red-Rainy (SRR) 

Region 10 Missouri (MO) 

Region 11 Arkansas-White-Red (AR) 

Region 12 Texas-Gulf (TX) 

Region 13 Rio Grande (RG) 

Region 14 Upper Colorado (UC) 

Region 15 Lower Colorado (LC) 

Region 16 Great Basin (GB) 

Region 17 Pacific Northwest (PNW) 

Region 18 California (CA) 

 

To evaluate the forecast skill of each experiment we estimated Spearman rank correlation 

coefficients (Wilks 2006) between the ensemble mean forecasts (over years) and the 

reference simulations.  Spearman rank correlation is a measure of monotonic associations 

between forecasts and observations (Jolliffe and Stephenson 2003). The skill (rank 

correlation) of the ESP experiment is considered to be the “Baseline skill”. We 
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considered the difference between the skill of OBS_Merged_ESP and the ESP 

experiment as the potential improvement and the difference between the skill of 

MRF_Merged_ESP and the ESP experiment as the actual improvement in baseline skill.  

3. Results 

 

We present the results for a forecast period of 2 months only (Figs. 4.4, 4.5, 4.6, 4.7, 4.8 

and 4.9). Although in a few cases we observed improvements in seasonal hydrologic 

prediction skill due to use of MRWFs for three-month lead, generally the improvement in 

skill was limited to lead-1 and lead-2.  

First we show the baseline skill (skill of the ESP experiment). The sub-regions where the 

baseline skill is not significant at 95% significance level have been masked and are 

shown in dark grey (the critical value of the Spearman rank correlation was estimated 

using the table given in Zar (1972)). We then show the potential improvement in the 

baseline skill (difference between the skill of OBS_Merged_ESP and ESP experiments). 

Again the improvement is shown over those sub-regions where the skill of 

OBS_Merged_ESP is significant at the 95% level. Finally, we show the ratio of the actual 

improvement in skill (difference between the skill of MRF_Merged_ESP and ESP 

experiment) and the potential improvement in skill, to highlight the level of the 

improvement in skill actually recovered by using realistic MRWFs. We show the actual 

improvement in skill over those sub-regions only where the potential improvement in 

skill is > 0.1 and the skill of OBS_Merged_ESP is significant at the 95% level. 

3.1  Monthly runoff forecasts 
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The correlations of ensemble mean monthly runoff forecasts from ESP initialized 

(baseline skill) on day 1 of each with the reference runoff at leads 1 to 2 months are 

shown in Fig. 4.4. In general the baseline skill is highest at lead-1. Overall, across the 

CONUS, the baseline skill for runoff forecasts is highest during forecast periods starting 

in winter months (e.g. December-January-February, (DJF)) and lowest during forecast 

periods starting in fall months (mainly September and October). During forecast periods 

starting in spring (March-April-May) and early summer months (June and July), the 

western U.S. stands out with relatively high runoff forecast skill up to lead-2 (and beyond, 

not shown here).  This is mostly attributable to the effects of snow, which provides 

substantial IHC-related forecast skill for forecast periods starting in late winter to early 

summer. 

Fig. 4.5 shows the potential improvement in baseline skill of monthly runoff forecasts (i.e. 

difference between the skill score of runoff forecasts from OBS_Merged_ESP and ESP).   

Not surprisingly the greatest improvement in runoff forecast skill is at lead-1, and the  

effect decreases with lead-time. The largest improvement in skill for any given sub-

region at lead-1 is generally in those cases where the first month of the forecast period is 

climatologically wet. This is the case, for example, for sub-regions in the Great Plains, 

Midwest and LM sub-regions for forecasts starting in April through October, and for the 

Pacific coastal sub-regions for forecast periods starting in November through the winter 

months (e.g., DJF). On the other hand, the improvement in skill at lead-1 is small for sub-

regions for which the first month of the forecast period is climatologically dry or the 

initial moisture variability is much higher than the precipitation variability during the 
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forecast period (small κ values according to the convention of Mahanama et al. (2011)); 

such conditions lead to high baseline skill.  

 

 

Figure 4.4: Baseline skill (i.e., skill of ESP experiment) for runoff forecasts at leads 1-2 
months.  (Dark grey color shows the sub-regions where the baseline skill is not 
significant at 95% significance level.) 

This is the case for instance in the interior of the Western U.S. during spring and summer 

months.In some cases, the improvements in skill due to use of perfect MRWFs persists 
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into leads-2 and -3 (not shown). These cases likely correspond to better knowledge of 

IHCs at the end of the 14 days in OBS_Merged_ESP experiment than in the ESP 

experiment.  

 

 

Figure 4.5: Potential improvement in runoff forecast skills at leads 1-2 months.  (Dark 
grey color shows the sub-regions where the skill of OBS_Merged_ESP is not significant 
at 95% significance level.) 
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The potential improvement in skill shown in Fig. 4.5 clearly is optimistic relative to what 

is achievable in practice because weather forecast skill is imperfect even for the smallest 

(e.g., one day) leads, and declines thereafter throughout the 14-day MRWF period.  

Fig. 4.6 shows the ratio of actual improvement in skill (differences in correlations for 

runoff forecasts derived by MRF_Merged_ESP and ESP) to potential improvement in 

skill (as discussed above) and indicates the improvement in runoff forecast skill that can 

be achieved realistically by using MRF medium range weather forecasts for the first 14 

days of the forecast period. (It should be noted that these results may be slightly 

pessimistic as the MRF model has been retired, and MRWF skill for current generation 

weather forecast models may be slightly higher.  However, the MRF reforecast data set is 

unique in providing a consistent set of reforecasts appropriate for the type of analysis we 

have performed; a newer version of this data set is planned but has not yet been released).  

Two main factors control the actual improvement in runoff forecast skill: (i) the potential 

improvement in skill (as shown in Fig. 4.5, derived from the use of perfect MRWFs) and 

(ii) the forecast skill of the MRWFs themselves. In other words, the improvement in skill 

due to use of MRWFs will be highest when both the potential improvement in hydrologic 

forecast skill and the MRWF skill (primarily for precipitation) are high. Therefore in Fig. 

6, we show the actual improvement over those sub-regions only where the skill of 

OBS_Merged_ESP is significant at 95% level and the potential improvement in baseline 

skill is greater than 0.1.  
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Figure 4.6: The ratio of actual improvement and potential improvement in baseline runoff 
forecast skill at leads 1-2 months. (Dark grey color shows the sub-regions where either 
the potential improvement in skill is < 0.1 or the skill of OBS_Merged_ESP is not 
significant at 95% significance level.) 

In general, Fig. 4.6 shows that the actual improvement in skill due to use of the MRF 

forecasts is highest for those sub-regions and times of the year where the first month is 

climatologically wet. Overall the actual improvement in skill is extensive over the Great 

Plains, Midwest, Texas-Gulf and parts of the Northern and Southeastern U.S. at lead-1 
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during the forecast periods starting in spring (mainly April and May), summer (mainly 

June and July) and fall (SON, September-October-November) months. Over the 

mountainous West sub-regions the actual improvement in skill is highest during the 

forecast period initialized on 01 November, December and January. Again those are also 

the forecast periods when the baseline skill is low over those regions (Fig. 4.4), whereas 

during the forecast periods starting in spring and summer months (when the baseline skill 

is high) both the potential and actual improvement in skill is generally negligible (Fig. 4.5 

and Fig. 4.6). The sub-regions shown in white during each forecast period show potential 

improvement but little or no actual improvement; likely due to limited MRF precipitation 

forecast skill.  

3.2  Soil moisture (SM) forecasts 

 

Fig. 4.7 shows the baseline skill for SM forecasts for lead-1 and lead-2. In general, the 

baseline skill for SM is much higher than for runoff (Figs. 4.5 and 4.7). Shukla and 

Lettenmaier (2011) also showed that at lead-1 IHCs generally dominate SM forecast skill.  

Similar to the case of runoff forecasts across the CONUS, baseline skill for SM is 

generally highest during forecast periods starting in the winter, with higher skill over the 

western as compared with the eastern U.S. The baseline skill at leads-2 (and -3, not 

shown here) is high over the interior of the Western U.S. for forecast periods starting on 

day 1 of spring (March-April-May, MAM) and summer (June-July-August, JJA) months.  

The potential improvement in the baseline skill of SM forecasts for each forecast period 

is shown in Fig. 4.8. Overall, the potential improvement in SM forecast skill at lead-1 is 

lower than the corresponding values for monthly runoff forecast skill (Figs. 4.5 and 4.8). 
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This appears to be a result of the high baseline skill for SM at lead-1 (i.e., high 

contribution of IHCs in SM forecast skill), hence leaving less room for improvement than 

for the case of runoff (since the maximum correlation value or the value of skill is 1). As 

for runoff, the greatest potential improvement in skill is for sub-regions and forecast 

periods where the lead-1 month is climatologically wet. Improvements at lead-1 are 

mostly limited to the Southwestern and Eastern U.S. (and Great Plains in a few cases) 

where the contribution of IHCs to SM forecast skill is lower than for the Western U.S. 

Mainly in the forecast periods starting in April, May and June and fall months 

(September and October) relatively large potential improvements can be seen over those 

regions. The potential improvement in skill at lead-2, however, seems more extensive in 

the case of SM forecasts than runoff. There could be a few explanations for this pattern. 

First, more sub-regions show significant levels of OBS_Merged_ESP skill at lead-2 in 

the case of SM forecasts skill than in that of runoff skill (therefore fewer regions are 

shown in dark grey at lead-2 in Fig. 4.8 than Fig. 4.5). Second, the baseline skill for SM 

forecasts (i.e., skill of ESP experiments) at lead-2 is smaller than at lead-1 leaving more 

room for improvement in skill. Finally, the improvement in SM forecast skill at lead-2 

could be a result of persistence of the contribution of MRWF skill at lead-1. Once again 

the potential improvement in SM forecasts skill at lead-2 is generally prominent over the 

eastern half of the country. 
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Figure 4.7: Baseline skill (i.e., skill of ESP experiment) for SM forecasts at leads 1-2 
months.  (Dark grey color shows the sub-regions where the baseline skill is not 
significant at 95% significance level.) 
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Figure 4.8: Potential improvement in SM forecast skills at leads 1-2 months.  (Dark grey 
color shows the skill of OBS_Merged_ESP is not significant at 95% significance level.) 
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Figure 4.9: The ratio of actual improvement and potential improvement in baseline SM 
forecast skill at leads 1-2 months. (Dark grey color shows the sub-regions where either 
the potential improvement in skill is < 0.1 or the skill of OBS_Merged_ESP is not 
significant at 95% significance level.) 

 

The ratio of actual to potential improvement in SM forecast skill is shown in Fig. 4.9. 

The actual improvement in skill is shown only over the regions where potential 

improvement in SM forecasts skill is greater than 0.1 and the skill of OBS_Merged_ESP 
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is significant at the 95% level. Since the baseline skill of ESP (and hence skill of 

OBS_Merged_ESP) is generally significant across the CONUS at lead-1, the sub-regions 

shown in grey in Fig. 4.9 are mostly those regions where the potential improvement in 

skill is lower than 0.1.  Overall for the most part the actual improvement in skill is limited 

to the sub-regions in the eastern half of the U.S., mostly during the forecast periods 

starting in April, May, June, September and October. Actual improvement in skill, 

however, can be seen over Pacific coastal regions at lead-1 for forecast periods starting in 

November and December. Again following the pattern of potential improvement, actual 

improvement at lead-2 in SM forecast skill also seems more extensive than in runoff 

forecast skill. This could be due to the persistence of the contributions of MRWFs at 

lead-1. 

4. Discussion  

 

Not surprisingly, perfect MRWFs show the greatest improvement in skill while MRF 

forecasts show smaller or no improvement.  However, further improvement in MRWF 

skill will presumably lead to improvement in seasonal hydrologic prediction skill in those 

sub-regions and forecast periods where the use of perfect medium range weather 

forecasts yields most improvement in seasonal hydrologic prediction skill.  For example 

during summer months (JJA), when the potential improvement for interior Western U.S. 

regions and much of the Eastern U.S. is greater than 0.2, the actual improvement is 

limited due to the limited MRWF skill (Figs. 2 and 3). 

We used a simple bias correction and disaggregation approach in the MRF_Merged_ESP 

experiment. Our focus was on the removal of bias in the 14-day accumulated forecast. 
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Our analyses were performed at the monthly time scale for each grid cell (not routed) and 

as such the daily sequencing should not change the monthly results significantly.   

5. Conclusions 

 

Our analysis indicates the following: 

(1) There is potential to improve monthly runoff and SM forecast skill beyond the IHC effect 

at lead-1 (and up to 3 months in a few cases) by exploiting MRWF skill. In general the 

Great Plain regions, Midwest, parts of the Southwestern U.S. (sub-regions in Texas) and 

Eastern U.S. would benefit most during forecast periods starting in April through 

November. On the other hand, sub-regions in the mountainous Western U.S. would 

benefit most during forecast periods starting in November and the winter months (DJF). 

(2) The potential (and actual) improvement in runoff forecasts skill as contrasted with SM 

skill is larger at lead-1, mostly due to high baseline skill for SM (i.e. stronger IHC effect 

in SM), whereas the improvement at lead-2 is more extensive for SM forecasts than for 

runoff.    

(3) Potential improvement in baseline skill for runoff forecasts generally varies from 0 to 0.8, 

whereas for SM it varies from 0 to 0.5. However, the space-time patterns of 

improvements are similar for runoff and SM.  

(4) The actual improvement in skill due to use of MRF forecasts is limited by modest 

forecast skill for precipitation. The ratio of actual skill to potential skill improvement 

generally varies from 0 to 0.8. Sub-regions in the Great Plains, Midwest, Texas, and 
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Northeastern and Southeastern U.S. could potentially benefit most from improvement in 

MRF skill during forecast periods starting in the summer months (JJA, June-July-August). 

Our findings could have significant implications for the improvement of seasonal 

hydrologic predictions at short lead-time (i.e. lead-1 to -3 months). Present protocols for 

generation of ensemble hydrologic forecasts from seasonal climate forecasts (e.g., Luo et 

al. 2007) make use of climate forecast ensembles that are generated through use of 

temporal offsets.  The temporal offsets are mainly used to exploit predictability from 

different initial SST conditions. For example real-time operational seasonal climate 

forecasts such as the International Research Institute (IRI) seasonal climate forecasts are 

generated using seven atmospheric global circulation models (forced by the predicted 

global tropical SSTs).   However, the forecast integration occurs 3-4 weeks in advance of 

the seasonal forecast period, hence the models do not exploit the skill from the observed 

atmospheric initial conditions (as well as the land surface conditions) at the beginning of 

the forecast period (Barnston et al. 2010).  Likewise the Climate Forecast System (CFS) 

(Saha et al. 2006) real-time seasonal forecasts make use of initial conditions of the last 30 

days. As a result, the effects of MRWFs at the beginning of forecast period are not 

reflected in the seasonal climate forecasts.  This could be resolved either by a) use of 

shorter temporal offsets or (b) merging deterministic weather forecasts for the first 14 

days (or perhaps shorter, given that most forecast skill comes from the first 5 days or so) 

with seasonal climate model forecasts thereafter.   

Finally, improvement in drought prediction skill at short lead-times could potentially help 

with decisions that involve identification of regions with the potential for drought 
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recovery.  This often occurs over much shorter lead times than drought onset, hence 

better use of weather forecasts could provide practical benefits in this arena as well.  
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V. MULTI-RCM ENSEMBLE DOWNSCALING OF NCEP CFS 
SEASONAL FORECASTS: EVALUATION OF 

IMPLICATIONS FOR SEASONAL HYDROLOGIC 
FORECAST SKILL 

 

This chapter will be submitted to the Journal of Geophysical research in its current 

format: Shukla, S., and D. P. Lettenmaier. 2012. Multi-RCM Ensemble Downscaling of 

NCEP CFS Seasonal Forecasts: Evaluation of Implications for Seasonal Hydrologic 

Forecast Skill. J. Geophy. Res.    

I. Introduction 

 

Improved seasonal climate forecasts offer one of the best mechanisms by which climate-

related risks to water and drought management can be mitigated (Hamlet et al. 2002; 

Wood et al. 2002; Steinemann 2006; Voisin et al. 2006). Major strides have been made in 

improving the scientific underpinnings of seasonal climate forecasts over the past two 

decades, notably through the evolution of coupled global atmosphere-ocean models 

(Goddard et al. 2001; Palmer et al. 2004; Barnston et al. 2003; Saha et al. 2006b). It 

remains to be demonstrated, however, that these modeling advances improve climate 

forecast accuracy (especially of precipitation, the key hydrologic driver), and in turn 

seasonal hydrologic forecast accuracy.  One of the major challenges in using seasonal 

climate forecasts for hydrologic prediction is their coarse resolution, which results in a 

mismatch in the scale of hydrologic models, and requires some form of spatial (and 

sometimes temporal) downscaling (Wood et al. 2002; Diez et al. 2005b; Wood et al. 

2005; Wood and Lettenmaier 2006; Luo et al. 2007).  
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 Two methods of downscaling global climate model outputs are commonly used: (i) 

statistical downscaling (Wood et al. 2002, 2005; Vrac et al. 2007; Maurer and Hidalgo 

2008a; Zorita and Von Storch 2010; Yoon et al. 2011), and  (ii) dynamical downscaling 

(Nobre et al. 2001; Diez et al. 2005a; Castro et al. 2007; Diez et al. 2009).  Statistical 

downscaling methods take advantage of the observed relationships between the climate at 

finer resolution and coarser resolution and use that relationship to translate global climate 

model output to finer resolution (Wood et al. 2002; Maurer and Hidalgo 2008b). In 

dynamical downscaling, regional climate models (RCMs) are nested in the global model 

over a regional domain, with lateral boundary conditions taken from the global model 

(Castro et al. 2005, 2007; Pielke Sr and Wilby 2012). RCMs provide higher detail in both 

topographic variations and areas of strong contrast in land cover, such as coastal zones or 

urban areas, and also allow description of smaller-scale atmospheric processes, which 

lead to the formation of mesoscale weather phenomena (Feser et al. 2011; Leung et al. 

2003).  

Dynamical downscaling clearly is more physically based than statistical downscaling.  It 

therefore is arguably applicable in global climate change scenario analysis when the 

assumption of climate stationarity inherent in statistical methods may not be valid (Hay 

and Clark 2003). However, dynamical downscaling is much more computationally 

demanding than statistical downscaling. The computational time required to generate 

climate forecasts is critically important for medium range to seasonal hydrological 

forecasts that are made at daily, weekly and bi-weekly intervals, and there are questions 

as to whether computational resources are better allocated to increasing the spatial 

resolution of the global model relative to the RCM.   
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Several recent studies have evaluated the value of dynamically downscaled medium 

range to seasonal climate forecasts relative to statistically downscaled forecasts in terms 

of potential improvement in precipitation, temperature and hydrologic forecast skill 

(Kidson and Thompson 1998; Wilby et al. 2000; Hay and Clark 2003; Schmidli et al. 

2007). Hay and Clark (2003) evaluated runoff forecast skill in three snowmelt-dominated 

basins in the western U.S. using dynamically and statistically downscaled output from the 

NCEP/NCAR reanalysis (Kalnay et al. 1996). They concluded that even dynamically 

downscaled climate model output needs to be bias-corrected, and runoff forecasts based 

on statistically downscaled climate forecasts were at least as skillful as those based on 

dynamical downscaling in all three basins. Other studies, such as (Wilby et al. 2000; 

Wood et al. 2004), also came to similar conclusions.  

The Multi-RCM Ensemble Downscaling (MRED) of National Centers for Environmental 

Prediction (NCEP) Climate Forecast System CFS Seasonal Forecasts (MRED) was 

undertaken to answer a central question:  “Do RCMs add significant regional skill to 

current global model forecasts?”  In the MRED project, CFS winter (December through 

April) seasonal (re)forecasts for 1982 to 2003+, were downscaled using seven RCMs. 

Ten CFS ensemble members, initialized at 00UTC on Nov. 21-25 and Nov. 29-Dec. 3 

were downscaled by each of the RCMs. Yoon et al. (2012) evaluated the dynamically 

downscaled MRED forecasts and concluded that dynamical downscaling of forecasts 

does produce fine scale features in the climatology and anomalies of precipitation and 

temperature that are missing in the CFS forecasts due to their inherent coarse spatial 

resolution. They also observed that the skill of the dynamically downscaled forecasts was 

somewhat higher than in CFS, mainly over the Northwest and north-central U.S.  
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In this study we evaluate the value of multi-RCM ensembles in terms of their 

implications for seasonal hydrologic forecast skill. We quantify the skill of multi-RCM 

ensembles (dynamically downscaled) in comparison with statistically downscaled (using 

Bias Correction and Spatial Downscaling (BCSD); Wood et al., 2002) CFS forecasts used 

to produce similar hydrologic forecasts. Our specific objectives are to (1) estimate the 

forecast skill of runoff (RO), soil moisture (SM) and snow water equivalent (SWE) 

obtained via the dynamically downscaled MRED CFS forecasts in comparison with 

hydrologic forecasts that are based on statistical downscaling of the same CFS reforecasts 

used in MRED; and (2) evaluate whether multi-RCM ensembles improve hydrologic 

forecast skill relative to the use of single RCM ensembles.  

2. Methods, data and hydrologic model 

 

In this section we provide a brief description of the MRED project (section 2.1), the 

statistical downscaling method (section 2.2), the hydrologic model (section 2.3), the 

observed forcings data set and observational analysis (section 2.4), the experimental 

design (section 2.5), and the forecast evaluation metrics (section 2.6).  Fig. 5.1 

summarizes the approach we used. We statistically downscaled both CFS forecasts (from 

their native resolution of T62) as well as dynamically downscaled MRED forecasts (from 

0.375 degrees latitude-longitude) to 0.125 degree to force the hydrologic model and 

generate hydrologic forecasts.  

2.1 Dynamical downscaling  
 

Dynamical downscaling of winter season (December - April) CFS forecasts was 
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undertaken by the MRED project. The RCMs used by MRED to dynamically downscale 

CFS forecasts are: (1) The Regional Spectral Model (RSM)-NCEP (Juang et al. 1997); 

(2) The Regional Spectral Model (RSM)-ECPC (Roads et al. 2010); (3) The Advanced 

Research WRF (WRF-ARW) (Skamarock et al. 2005); (4) Mesoscale Model 5 (MM5-

ISU) (Anderson et al. 2007); (5) Climate-Weather Research and Forecasting (CWRF) 

(Liang et al. 2005); (6) Eta (Xue et al. 2007); and (7) Regional Atmospheric Modeling 

System (RAMS) (Cotton et al. 2003).  

 

 

Figure 5.1: Schematic diagram of approach used in this study. 

 

Each RCM was forced with CFS lateral boundary conditions. Initial conditions for the 10 

common CFS ensemble members used in this study were taken from 21-25 Nov. and 29 

Nov. – 3 Dec., for the years 1982-2003. The forecast period was from 1st December 

through 30th April of each forecast year. The spatial resolution of each RCM was 0.375 

degree latitude-longitude. The hydrologic model (section 2.3) we used for this study was 
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implemented at 0.125 degree, hence the multi-RCM ensembles had to be further 

downscaled from their original resolution of 0.375 degrees. We used BCSD method 

(section 2.2) to bias-correct and then spatially and temporally downscale monthly means 

of Precipitation (P), Surface temperature maximum (Tmax) and Surface temperature 

minimum (Tmin) for each of the multi-RCMs ensembles to daily time step. Further 

details about the MRED project and the experimental setup used to dynamically 

downscale CFS forecasts is reported in  Yoon et al. (2012). 

 

2.2 Statistical Downscaling  

 

We used the Bias Correction and Spatial Downscaling (BCSD) (Wood et al. 2002, 2005) 

method to downscale CFS forecasts from their native resolution (T62) and multi-RCM 

forecasts from 0.375 degrees – in both cases to 0.125 degrees latitude-longitude (the 

spatial scale of the hydrologic model). The BCSD method has been widely used to 

downscale global climate model output to finer resolution for hydrologic simulation 

purposes (Maurer and Hidalgo 2008b; Wood et al. 2002, 2005). The method as used in 

this study can be summarized in the following steps (see Wood et al. 2002, 2005 for 

details). 

(i) The monthly values of CFS and RCM P, Tmax and Tmin output for each month 

were bias-corrected relative to the observed monthly climatology of those variables 

(section 2.4) at their respective native resolutions, using a quantile mapping approach 

(Panofsky and Brier 1968) on a grid cell by grid cell basis.  The CFS and RCM 

climatologies for each grid cell were taken from hindcast simulations, and included all 
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values from the 10 ensemble members for the 1982 to 2003 period (we did not include 

the forecast ensembles and observations from the target year in the climatologies used for 

bias-correction). Therefore the number of values in the forecast and observed 

climatologies for any given target year was 210 (21 years ×10 ensembles) and 21, 

respectively. 

(ii) Following bias-correction we spatially interpolated the forecast anomalies 

(multiplicative anomalies in case of P and additive anomalies in case of Tmax and Tmin) 

to 0.125-degree spatial resolution. 

(iii) Finally, we disaggregated downscaled monthly anomalies to daily values of P, 

Tmax and Tmin following a random resampling approach as described in (Wood et al. 

2002).  

The statistical downscaling was performed separately for each ensemble member from 

CFS and each of the seven RCMs, resulting in 10 ensembles of daily P, Tmax, Tmin 

values for the 1st December to 30th April forecast period for each model for the period 

1982-2003.  Performing BCSD on P, Tmax and Tmin and using those downscaled 

forecasts to run a hydrologic model (such as VIC) to simulate hydrologic variables 

arguably is a better strategy than performing BCSD directly on the hydrologic outputs 

from the RCMs or CFS, because: (1) bias corrections of inputs (i.e. P, Tmax and Tmin) to 

the hydrologic model, in turns reduce biases in each of the energy and water balance 

components and (2) it avoids having to perform separate BCSD on each of hydrologic 

variables obtained from RCMs or CFS (thus reduces the computational time).  

Furthermore, differences in the soil layer depth (i.e. moisture storage) among RCMs and 
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CFS could pose challenges in bias-correcting their hydrologic output relative to the VIC 

output. (3) it is also possible that depending on how well the land surface processes have 

been represented in the RCMs or CFS the skill (e.g. correlation) of hydrologic variables 

such as SM and RO could be lower than the skill of P, Tmax and Tmin when compared 

with corresponding observations. 

2.3 Variable Infiltration Capacity (VIC) model 

 

The VIC model is a semi-distributed macroscale hydrologic model (Liang et al. 1994). It 

parameterizes major surface, subsurface, and land-atmosphere hydrometeorological 

processes and represents the role of sub-grid spatial heterogeneity in SM, topography, 

and vegetation on runoff generation (Liang et al. 1996a; b). It provides for non-linear 

dependence of the partitioning of precipitation into infiltration and direct runoff as 

determined by soil-moisture in the upper layer and its spatial heterogeneity. The 

subsurface is usually partitioned into three layers. The first layer has a fixed depth of ~10 

cm and responds quickly to changes in surface conditions and precipitation. Moisture 

transfers between the first and second, and second and third soil layers are governed by 

gravity drainage, with diffusion from the second to the upper layer allowed in unsaturated 

conditions. Baseflow is a non-linear function of the moisture content of the third soil-

layer (Liang et al. 1994; Todini 1996). The model was run in water balance mode, which 

means that the surface temperature is assumed equal to the surface air temperature and is 

not iterated for energy balance closure (this also implies zero ground heat flux). The 

snow accumulation and ablation algorithm (Cherkauer et al. 2003; Andreadis et al. 2009) 

module of the VIC model was run at a 3-hourly time step. The vegetation, soil, elevation 
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and snow band parameters used in this study were the same as in (Maurer et al. 2002). As 

mentioned in section 2.4, we used the Maurer et al. 2002 precipitation and temperature 

forcings data set. Other forcings, such as shortwave and longwave radiation, specific 

humidity, etc., were determined using the daily temperature range (difference between 

Tmax and Tmin) following the methods of (Kimball et al. 1997; Bohn et al. 2012) 

2.4 Gridded observations  

 

To estimate the hydrologic forecast skill derived from the use of the alternate forcing 

approaches, a consistent long-term data set of RO, SM and SWE is needed. Due to 

scarcity of SM and SWE observations (and to a lesser extent runoff), we created long-

term VIC model (section 2.3) output for these variables by forcing the model with high 

quality gridded forcings of P, Tmax, Tmin and wind speed. These gridded data were 

taken from (Maurer et al. 2002), extended from 2000 to 2010 following essentially the 

same methods as in (Maurer et al. 2002) (see 

http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html).  This data set 

was also used as the observational climatology for the bias-correction and spatial 

downscaling of the CFS and RCM output (section 2.2). The soil, vegetation and snow 

band parameters used to run VIC model were the same as in (Maurer et al. 2002). Daily 

values of RO, SM and SWE obtained from the VIC simulations were used to calculate 

total runoff (surface + baseflow) and mean SM and SWE at monthly time steps for each 

month during the forecast period (December to April).  

2.5 Forecast evaluation 
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We calculated the hydrologic prediction skill for each variable (runoff, SM and SWE) by 

calculating a simple Pearson Product-moment correlation (Wilks 2006) between the 

ensemble mean forecasts of those variables with the corresponding values obtained from 

the observational analysis (section 2.4). We focus here on those regions and lead-times at 

which the correlation coefficient (forecast skill) was statistically significant at 90% 

confidence level.  For a sample size of 21 years (1982-2002), statistical significance is 

achieved for sample correlations r with │r│> 0.37. 

We also identified the regions and leads at which the difference between the hydrologic 

forecast skill derived by using statistically as contrasted with dynamically downscaled 

CFS forecasts is significant at 95% and 90% confidence levels.  We did so by 

transforming each of the correlation values (say r1 and r2) into standard normal deviates 

(say Z1 and Z2) by using Fisher’s Z transformation method (Eq. 1) 

Z1[2] = 0.5! loge
1+ r1[2]

1" r1[2]

#

$
%%
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((              (1) 

We then estimated critical Z values using Z1 and Z2 (Eq. 2), where n is the sample size 

(i.e. 21) 
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For the correlation values to be statistically different at 95%[90%] confidence level the 

value of Z should be greater or equal to 1.96[1.66].  



www.manaraa.com

  107 

 

3. Results 

 

In this section, we first present the difference in the hydrologic forecast skill resulting 

from VIC forced with statistically downscaled CFS precipitation and temperature 

forecasts relative to ESP forecasts made with VIC. The ESP method derives its 

hydrologic forecast skill solely from knowledge of the initial hydrologic conditions 

(IHCs), hence the difference between ESP and downscaled CFS skill provides a basis for 

estimating the value of CFS for hydrologic forecast applications. We then assess how 

dynamical downscaling of CFS via multi-RCMs compares with statistical downscaling of 

CFS in terms of hydrologic forecast skill. In all cases, we assert hydrologic forecast skill 

improvements only when the results are statistically significant (for differences from the 

benchmark ESP) at 90% confidence level. We also highlight those regions and lead-times 

for where the hydrologic forecast skill derived from using statistically (or dynamically) 

downscaled CFS forecasts is statistically different than the skill derived from the ESP 

method. We also compare the skill of each individual RCM against the multi-RCM 

ensemble average (Multimodel) and the RCMs that displays the highest hydrologic 

forecasts skill for any given grid cell and lead-time (Best Model).  

3.1 Statistically downscaled CFS-based vs. ESP hydrologic forecast 
skill  

3.1.1 Runoff (RO) forecasts: 

 

Fig. 5.2 (a) shows the difference between the forecast skill of monthly total RO derived 

from statistically downscaled CFS forecasts and the ESP method, at lead times of one to 
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five months. For the regions in grey, hydrologic forecast skill derived from the use of 

CFS is not statistically significantly (90% confidence interval) different from ESP. 

 

(a) Runoff 

 

(b) Soil Moisture 

(c) Snow Water Equivalent 

 

Figure 5.2: The difference in (a) runoff (b) soil moisture and (c) snow water equivalent 
forecast skill (measured as correlation between ensemble mean forecast and observations) 
derived from statistically downscaled CFS forecasts and the ESP method. Only those 
regions where the skill of hydrologic forecasts derived from CFS is significant at 90% 
confidence level are shaded. The regions in white indicate degradation of skill in 
downscaled CFS forecasts relative to ESP and non-white colors show improvement in 
skill relative to ESP method.  Gray areas indicate no statistically significant skill derived 
from CFS forecasts. 

Regions in white color show degradation of hydrologic forecast skill for CFS relative to 

ESP, whereas non-white colors depict improvement in skill relative to ESP. As shown in 

Y oon et al., [2012], the CFS precipitation forecast skill (of the ensemble mean forecast) 

at lead-1 month is significant mainly only over the southwestern, north, southeastern, and 

parts of the north-central U. S., whereas the temperature forecast skill at lead-1 is 

significant over the entire northern part of the country. However, significant 
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improvements in runoff forecast skill at lead-1 are sparse and generally limited to the 

mountainous western U.S. and north central U. S. (Fig. 5.2 (a) and Fig. 5.3 (a)). 

Improvements in runoff forecast skill using CFS are most apparent at leads of 3, 4 and 5 

months over major parts of California, the southwestern mountainous regions, and the 

Southeastern U. S. (Fig. 5.2 (a)). In most cases those improvements in skill are significant 

at the 90% confidence level (Fig. 5.3 (a)). The improvement in runoff forecast skill at 

relatively long leads can be attributed to CFS precipitation skill “rebound” (Guo et al. 

2011, 2012) (also shown in (Yoon et al. 2012)) as well as to the low ESP skill at longer 

lead time (leaving more room for improvement in RO forecast skill at higher lead times 

than at short lead times).  

3.1.2 Soil Moisture (SM) forecasts: 

 

Figs. 5.2 (b) and 5.3 (b) show the differences and their significance levels in the SM 

forecast skill derived by using statistically downscaled CFS and ESP methods. There are 

no regions in grey at lead-1 month, which indicates that CFS results in significant skill 

improvements across the CONUS (probably in part due to lower natural variability of soil 

moisture relative to runoff). However as observed in (Shukla and Lettenmaier 2011), this 

significant SM forecast skill across the CONUS, at short lead time (e.g. lead-1 to -2 

months) is mainly derived from the knowledge of the IHCs (particularly in winter and 

spring months). This feature results in small room for improvement in skill through use 

of CFS, which is why the differences in SM forecast skill derived from CFS and ESP are 

nominal (< 0.1), even if statistically significant, at 1 month lead, across the country (Fig. 
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5.2 (b)). Nonetheless, there are some regions in mountainous northwestern U. S. and 

 

   (a) Monthly Runoff 

 

(b) Soil Moisture 

 

(c) Snow Water Equivalent 

Figure 5.3: Significance levels of the difference in (a) runoff (b) soil moisture and (c) 
snow water equivalent forecast skill derived from statistically downscaled CFS forecasts 
relative to ESP method (measured as correlation between ensemble mean forecast and 
observations). Significance levels are shown only for those regions where the hydrologic 
forecast skill derived by statistically downscaled CFS forecast is significant at 90% 
confidence level. (Red color shows 95% significance whereas blue color shows 90% 
significance) 

 

North central U. S. where the difference between the SM forecast skill derived from CFS 

and ESP, at 1-month lead is significant at 90 and 95% confidence level (Fig 5.3 (b)).  

Similar to the case of runoff forecast skill, the improvement in SM forecast skill for CFS 

relative to ESP method is also high (Fig. 5.2 (b)) and significant (Fig. 5.3 (b)) at leads-3, -

4 and -5 months over the southwestern and southeastern U.S. Again this improvement in 

skill is the result of both the CFS precipitation forecast skill and low ESP skill.  
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3.1.3  Snow Water Equivalent (SWE) forecasts: 

 

Figs. 5.2 (c) and 5.3 (c) show the improvement in forecast skill of SWE derived by using 

statistically downscaled CFS forecasts and the ESP method. In this case we focus on 

those regions only where the long term mean SWE is greater than 10 mm. Aside from 

some parts of the Northeast, for most regions the difference in SWE forecast skill at 1-

month lead is either < 0 (degradation in skill) or nominal (<0.1). Nevertheless, at leads -3, 

-4 and -5 months there are some regions in the mountainous western U. S. where the 

improvement in SWE forecast skill is significant (Fig. 5.3 (c)). This improvement in 

SWE forecast skill at the end of the spring could be important for water supply during 

summer months over the mountainous western U.S. 

3.2 Hydrologic forecast skill  using dynamically vs .statistically 
downscaled CFS  

 

In this section we evaluate the difference in hydrologic forecast skill derived from 

dynamically downscaled and bias-corrected multi-RCM forecasts and the statistically 

downscaled CFS forecasts (Fig. 5.4-5.9). We show the relative improvement in 

hydrologic forecast skill for individual RCMs as well as multi-RCM ensemble averages 

(Multimodel) and the skill of the RCMs with the highest skill (Best Model) 

3.2.1 Runoff forecasts 

 

Fig. 5.4 shows the difference in the runoff forecast skill derived from bias-corrected 

dynamically downscaled relative to statistically downscaled CFS forecasts. The 

difference in skill for each individual RCM is shown in top seven rows in the figure (for 
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leads 1-5 months) and the eighth row shows the skill difference for Multimodel; the final 

row shows the highest skill among each individual RCMs. The regions shown in grey do 

not have statistically significant skill differences at 90% confidence level (that is, the 

hydrologic forecast skill derived from dynamically downscaled CFS forecasts is not 

significant at 90%). Fig. 5 shows those regions where the runoff forecast skill derived 

from dynamically downscaled CFS forecasts is statistically different from the statistically 

downscaled CFS forecasts at 95% (red colors) and 90% (blue colors) confidence level.  

Where there is an improvement in dynamically relative to statistically downscaled CFS-

derived forecasts, the improvement is mostly nominal (generally less than 0.2). Although 

overall most RCMs are in general agreement, a few RCMs do stand out with local 

improvements in skill as large as about 0.5 relative to statistically downscaled CFS.  The 

hydrologic forecasts skill obtained from Multimodel is generally higher than the skill of 

statistically downscaled CFS (Fig. 5.4), hence there are fewer regions shown in white 

(degradation of skill) (compare row 8 of Figure 5.4 with rows 1-7 of the same figure). 

Additionally the highest skill among all the individual RCMs (Best Model) is almost 

always equal to or higher than the Multimodel skill.  For example, at lead-1 over the 

Southwestern U. S., Best Model shows an improvement in runoff forecast skill of as 

much as 0.5 relative to statistically downscaled CFS forecasts, whereas the Multimodel- 

based improvement in skill is less than 0.2 (and also restricted to a much smaller domain). 

This indicates that over certain regions some RCMs perform much better than other 

RCMs Best Model also shows appreciable improvement over parts of California and the 

Southeast, mainly at leads 3-4, which is of practical importance because this is a location   
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where statistically downscaled CFS forecasts show large improvements relative to ESP. 

As shown in Fig. 5.5 the Best Model shows more spatially widespread statistically 

significant improvements in hydrologic forecast skill relative to statistically downscaled 

CFS at all leads than do any individual model or Multimodel. Those improvements are 

mainly apparent over the mountainous Western U.S. and north central/Great Plains 

regions.  

 

 

Figure 5.4: The difference in runoff forecast skill derived from dynamically and 
statistically downscaled CFS forecasts. Each of the first seven rows represent the runoff 
forecast skill (correlation between ensemble mean forecast and observations) obtained 
from the RCMs used in the MRED project, individually. The last two rows represent the 
skill of Multimodel average (Average of all RCMs and all ensembles) and of the RCM 
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(ensemble mean) with the highest runoff forecast skill for any given grid cell and lead-
time. Only those regions are shaded where the skill is significant at 90% level. 

 

3.2.2 Soil moisture forecasts 

 

Fig. 5.6 shows improvements in SM forecast skill when dynamically downscaled CFS 

forecasts are used relative to simple statistically downscaled forecasts at 1- to 5-months 

lead. At 1-month lead, SM forecast skill improvements are significant across the CONUS 

(hence no grey regions), however the difference in forecast skill relative to statistically 

downscaled CFS forecasts is small (i.e. < 0.1) or less than 0 (degradation of skill) in most 

cases. This nominal difference could be due to the fact that the baseline skill (i.e. the skill 

derived from using statistically downscaled CFS forecasts) is high (due to high 

contributions from the IHCs toward SM forecast skill), leaving little room for 

improvement (e.g. correlation values can be as large as 1, so if the baseline skill is 0.9 the 

improvement in skill cannot be more than 0.1). Similar to runoff forecast skill, Best 

Model is almost always better than Multimodel, and shows at least some improvement 

across the country (less area in white in Fig. 5.6).  

Fig. 5.7 shows the statistical significance of the improvement in SM forecast skill for 

dynamical relative to statistical downscaling of CFS forecasts.  There are some regions, 

mainly scattered over the mountainous northwestern and north-central U.S. where the 

improvement in skill for dynamical downscaling is significant at 95% and 90% 

confidence levels. Once again, the areas of improvement in skill are more widespread for 

the Best Model than Multimodel.  
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Figure 5.5: Significance level of the difference in runoff forecast skill (correlation of 
ensemble mean with observations) derived from dynamically and statistically downscaled 
CFS forecasts. Each of the first seven rows represent the skill obtained from individual 
RCMs used in the MRED project. The last two rows represent the skill of Multimodel 
average and of the RCM with the highest skill for any given grid cell and lead-time. Only 
those regions are considered where the hydrologic skill of the dynamically downscaled 
forecasts is significant at 90% level. (Red color shows 95% significance whereas blue 
color shows 90% significance) 
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Figure 5.6: Same as Fig. 5.4 but for SM forecast skill 

 

3.2.3 Snow Water Equivalent forecasts 
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Fig. 5.8 shows the difference in SWE forecast skill at leads 1 to 5 months obtained from 

dynamically and statistically downscaled CFS forecasts. We show those regions only 

where the SWE forecast skill is significant at 90% the level and the long term SWE mean 

is greater than 10 mm. Overall the improvement in SWE forecast skill obtained by 

dynamically relative to statistically downscaling CFS forecasts is negligible and is less 

than < 0.1 for most places, except in northern Wisconsin and the mountainous Upper 

Colorado River Basin, for certain RCMs. Multimodel shows positive skill differences for 

1-month lead only. Best Model shows larger areas with positive differences, mainly over 

mountainous western U. S. regions at all lead times. 

Fig. 5.9 highlights those regions where improvement in SWE forecast skill is significant 

at leads 1 to 5 months. The area of significant improvement in SWE forecast skill is 

relatively small and limited to the interior part of the mountainous western U.S.. Best 

Model consistently shows more regions of significant improvement in skill than does any 

individual model or Multimodel. Parts of the mountainous Upper Colorado River Basin 

show significant improvement in SWE forecast skill at lead-3 to -4 months for almost all 

the models. This improvement in SWE forecast skill could be valuable due to its 

contribution in summer runoff. 
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Figure 5.7: Same as Fig. 5.5 but for SM forecast skill. 
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Figure 5.8: Same as Fig. 5.4 but for SWE forecast skill. Only those grid cells are 
considered where the long term mean SWE during the forecast period is greater than 10 
mm. 
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Figure 5.9: Same as Fig. 5.5 but for SWE forecast skill. Only those grid cells are 
considered where the long term mean SWE during the forecast period is greater than 10 
mm. 
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3.3 Comparison of hydrologic skill  of Best Model, Multimodel and 
statistically downscaled CFS over 13 major river basins/regions 

 

In this section we show results of the comparison of the hydrologic skill derived from the 

Best model, Multimodel and statistically downscaled CFS over each of the 13 major 

CONUS river basins and regions as defined in Maurer et al., [2002]. We performed this 

analysis to investigate the variability of the difference between the skill of each of the 

RCMs spatially across the CONUS and with lead-time. Figs. 5.10-5.12 show the 

distribution of the hydrologic skill for RO, SM and SWE respectively, as derived from 

the Best Model (green), Multimodel (blue) and CFS (red) for all the grid cells in each of 

the 13 regions/basins, using Box-whisker diagrams. If the median value of the hydrologic 

skill for the Best Model is higher than Multimodel, then over the given basin, some 

RCMs (or at least one) have higher skill than the other RCMs.  Larger differences in 

median skill of multimodel and best model imply higher variability among RCMs.  

As shown in Fig. 5.10, in terms of runoff forecast skill, Best Model has higher median 

skill (correlation) than Multimodel and CFS over almost all basins and lead times. In 

general, this difference is higher for higher lead times, which is understandable because 

at short lead times the hydrologic skill in each case (Best Model, Multimodel and CFS) is 

influenced by the IHCs. Some basins such as Lower Mississippi, Arkansas-Red, Ohio 

and South Central Gulf stand out because for those basins at higher lead time (lead-3 and 

-4 months) the median of Multimodel is lower than CFS; however, the Best Model 

median is much higher than Multimodel. This indicates that, over those regions, there is a 

large range of individual RCM skill, and careful selection of the RCMs for hydrological 

forecast applications is critical. 
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Figure 5.10: Spatial distribution of the runoff forecast skill for each of the 13 major 
basins/regions in (Maurer et al. 2002)), derived from statistically downscaled CFS 
forecasts (Red), Multimodel average of dynamically downscaled CFS forecasts (Green) 
and Best Model  (Blue). (The width of the box and whisker for all three forecast skills has 
been kept different to avoid the overlap of one box over another).  

 

Fig. 5.11 is similar to Fig. 5.10, but for SM forecasts. For SM forecasts, the difference 

between the median skill derived from Best Model, Multimodel and CFS at lead-1 is 
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nominal at best. This is again due to the strong influence of the IHCs on SM forecasts at 

short lead times, which is why the skill of precipitation and temperature has little impact 

on the SM forecast skill. The difference between the SM forecast skill of Best Model 

(green), Multimodel (blue) and CFS (red) does increase with lead time; however, that 

difference is not as discernable as in the case of runoff forecasts. The difference is higher 

over eastern U.S. basins such as the Ohio, Lower Mississippi, Arkansas-Red and the East 

Coast than for the rest of the country. This could be attributed to the difference in the skill 

of RCMs, as well as smaller influence of IHCs in those regions relative to the rest of the 

country.   

Fig. 5.12 shows the distribution of SWE forecast skill for basins/regions that receive 

snow (we considered only those basins where there at least 100 grid cells have greater 

than 10mm SWE for any given month) for Best Model (green), Multimodel (blue) and 

CFS (red). Best model almost always had greater skill than Multimodel and CFS. The 

difference in skills was lowest at lead-1 month, due to the influence of initial snow 

conditions. The basins/regions where the difference between Best Model, Multimodel 

and CFS skill was highest are the Colorado and Rio Grande Basins, and Great Lakes and 

East Coast regions.  
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Figure 5.11: Same as Fig. 5.10 but for SM forecast skill. 
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Figure 5.12: Same as Fig. 5.10 but for SWE forecast skill. Only those basins/regions are 
considered where there were at least 100 grid cells with > 10 mm long term mean SWE. 

 

4. Summary and Conclusions: 

 

We have investigated whether seasonal hydrologic forecasts forced with dynamically 

downscaled CFS winter seasonal forecasts (December - April) can be more skillful than 

the similar hydrologic forecast forced with statistically downscaled CFS forecasts.  We 

conclude that:  

(1) The winter seasonal CFS forecasts as used in this study do provide useful skill for 

hydrologic forecast application when evaluated relative to the ESP method. The greatest 

improvements in runoff and SM forecast skill, relative to ESP, were observed over the 
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southwestern and southeastern U.S. at lead-3 to -5 months. Significant improvements in 

SWE forecast skill were also found over parts of the mountainous Western regions at lead 

3-5. 

(2) Dynamically downscaled forecasts do increase the runoff forecast skill beyond what is 

achievable by statistically downscaled CFS forecasts, however the significant 

improvements in skill were mainly limited to parts of the mountainous western and north 

central U. S. In almost all cases and at all lead times across the CONUS the RCMs with 

the highest skill (Best Model) showed higher improvement in runoff forecast skill than 

the Multimodel average.  

(3) In the case of SM forecasts the improvements in hydrologic forecast skill relative to the 

skill derived from statistically downscaled CFS forecasts were not as discernible as in the 

runoff forecasts. The differences between both sets of forecast skills were particularly 

low at 1-month lead. Significant improvements in skill were found in parts of the interior 

mountainous West and some parts of the north central U.S.  Again, Best Model showed 

much more widespread improvement in skill than did Multimodel.  

(4) Finally, the improvements in SWE forecast skill were sparse. Statistically significant 

improvements were mostly limited to the Great Lakes region, Colorado and interior 

northwestern mountainous regions.  

As to the question of whether dynamical downscaling provides hydrologically useful 

information relative to what is achievable by performing a simple statistical downscaling 

of the global model, we find that the answer is mostly no. In general, the overall skill of 

dynamically downscaled climate forecasts is mostly limited by the skill of the global 
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model in simulating large-scale climate phenomena (mainly in winter months). Some 

modest additional skill can be derived, however, through use of multiple RCMs, and 

choosing the RCM with the highest hindcast forecast skill. In the operational setting the 

“Best Model” for any given basin would be decided based on the RCMs’ hindcast skill 

over a given basin or region.  Use of a weighted multimodel average (where the weights 

could be proportionate, for instance, to the hindcast skill of each RCM for the given 

basin) rather than using a single RCM could be a better strategy. 

It is important to emphasize that we have focused on hydrologic forecast skill at 

monthly/seasonal lead times.  We have not investigated the ability of RCMs to forecast 

sub-daily or daily hydrologic extremes, and application that may better exploit the 

inherent capabilities of RCMs. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 
 

Although significant progress has been made towards developing and implementing new 

drought monitoring and prediction tools in recent decades, challenges still remain. This 

dissertation has sought to investigate how land surface models in conjunction with 

weather and climate forecasts can be used to address some of those challenges.  

In Chapter I, I posed four questions that motivated the research reported in Chapters II-V.  

The first question was “How well do drought management decisions based on an LSM-

based Drought Monitoring System (DMS) compare with decisions made in practice 

during historical drought events?”  In Chapter II, I showed that a Drought Monitoring 

System (DMS) based on LSM indicators would have been able to detect drought onset 

and recovery up to 4 months in advance of official drought declarations in the case of 

four droughts in Washington State over the last 35 years. 

The second question I posed in Chapter I is “What are the relative contributions of the 

primary hydrologic moisture storage variables (i.e. snowpack, soil moisture) and the 

atmospheric forcings (i.e. precipitation and temperature) to seasonal drought prediction 

and how do they vary spatially and seasonally across the United States?”. In Chapter III, I 

showed that the initial hydrologic conditions (IHCs) (i.e. snowpack and soil moisture 

state) generally have the strongest influence on seasonal hydrologic/drought prediction at 

one-month lead, beyond which their influence decays at rates that depend on location, 

lead time, and forecast initialization date. The strongest contribution of IHCs was 

observed over the Western U.S. during spring and summer months.  
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The third question posed in Chapter I is “Can seasonal drought prediction be improved by 

merging weather forecasts with seasonal climate forecasts, and to what extent?”. In 

Chapter IV, I showed that there is potential to improve monthly runoff and SM forecast 

skill beyond the IHC effect at lead-one (and up to three months in a few cases) by 

exploiting medium range weather forecast skill. In general the Great Plains, Midwest, 

parts of the Southwestern U.S. and the Eastern U.S. would benefit most during forecast 

periods starting in April through November. On the other hand, the mountainous Western 

U.S. would benefit most during forecast periods starting in November through the winter 

months (DJF). 

Finally the fourth question posed in Chapter I was “What is the value added in 

improvement of seasonal drought prediction through dynamical as contrasted with 

statistical downscaling of climate forecasts?”. In Chapter V, I showed that dynamically 

downscaled forecasts do somewhat increase hydrologic forecast skill (mainly runoff) 

during the winter season, beyond what is achievable by statistically downscaled CFS 

forecasts.  However, improvements in skill were mostly limited to parts of the Western 

and the north central U.S.  

This dissertation showed that land surface models are viable tools for drought monitoring 

and prediction, and despite the limited seasonal climate forecast skill, useful seasonal 

drought prediction skill can be achieved by exploiting the skill from the initial hydrologic 

conditions, and from medium range weather forecasts – neither of which is done in 

practice at present. During the course of this dissertation it became clear that additional 

work is warranted to address questions in several areas, which essentially would 

constitute extensions of the work reported here.  These include:  
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1. How does the role of IHCs in seasonal drought prediction skill change during drought 

events when the IHCs are drier than normal? 

2. Can dynamical downscaling of climate forecasts improve seasonal hydrologic forecasts 

during the summer season (when local scale features generally have greater influence 

over precipitation than in the winter season) relative to statistical downscaling?  

I believe that the methods outlined in this dissertation are appropriate to address these 

questions.  There are compelling motivations for doing so, both on scientific and practical 

bases, given the pervasive and costly – both in economic and human terms – implications 

of drought.  
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 Munoz-Arriola, F., S. Shukla, L. Luo, A. Munoz-Orozco, and D.P. 
Lettenmaier. 2009. Drought predictability in Mexico. 89th AMS Annual 
Meeting, Phoenix, AZ, Jan. 2009.  
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